File size: 19,703 Bytes
115ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96a04e2
90437ed
96a04e2
 
90437ed
96a04e2
 
 
 
 
 
 
115ff47
f73342b
115ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f73342b
115ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96a04e2
115ff47
 
 
 
 
9be0fe4
115ff47
 
 
 
 
 
9be0fe4
115ff47
 
 
 
 
 
 
96a04e2
115ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0277c7
115ff47
 
 
3b83f3a
115ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90437ed
115ff47
 
 
 
 
 
 
 
 
e1f9684
115ff47
 
912d588
115ff47
 
 
 
 
 
 
 
 
 
e1f9684
115ff47
 
 
 
 
 
3b83f3a
115ff47
46b1559
115ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0277c7
115ff47
 
 
 
 
 
 
90437ed
115ff47
 
 
 
dae846b
 
f73342b
dae846b
 
d288560
 
f73342b
 
 
dae846b
f73342b
dae846b
d288560
dae846b
d288560
dae846b
 
115ff47
 
3b83f3a
115ff47
46b1559
115ff47
 
 
 
 
 
 
 
 
 
 
 
e1f9684
f73342b
 
 
 
115ff47
 
f73342b
 
 
115ff47
 
 
90437ed
115ff47
 
 
 
 
 
3b83f3a
115ff47
46b1559
115ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90437ed
115ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4063273
115ff47
 
 
 
 
4063273
115ff47
 
 
 
 
 
 
 
 
 
 
 
3b83f3a
912d588
115ff47
 
 
 
 
 
 
 
 
 
3b83f3a
115ff47
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import logging
import json
import time
import io
import os
import re
import requests
import textwrap
import random
import hashlib
from datetime import datetime
from PIL import Image, ImageDraw, ImageFilter, ImageFont

import anthropic_bedrock
import gradio as gr
from opencc import OpenCC
from openai import OpenAI
from anthropic_bedrock import AnthropicBedrock, HUMAN_PROMPT, AI_PROMPT
from google.auth.transport.requests import Request
from google.oauth2.service_account import Credentials
from google import auth
from google.cloud import bigquery
from google.cloud import storage

SERVICE_ACCOUNT_INFO = os.getenv("GBQ_TOKEN")
SCOPES = ["https://www.googleapis.com/auth/cloud-platform"]
service_account_info_dict = json.loads(SERVICE_ACCOUNT_INFO)

creds = Credentials.from_service_account_info(service_account_info_dict, scopes=SCOPES)

gbq_client = bigquery.Client(
    credentials=creds, project=service_account_info_dict["project_id"]
)
gcs_client = storage.Client(
    credentials=creds, project=service_account_info_dict["project_id"]
)


class CompletionReward:
    def __init__(self):
        self.player_backend_user_id = None
        self.player_name = None
        self.background_url = None
        self.player_selected_character = None
        self.player_selected_model = None
        self.player_selected_paragraph = None
        self.paragraph_openai = None
        self.paragraph_aws = None
        self.paragraph_google = None
        self.paragraph_mtk = None
        self.player_certificate_url = None
        self.openai_agent = OpenAIAgent()
        self.aws_agent = AWSAgent()
        self.google_agent = GoogleAgent()
        self.mtk_agent = MTKAgent()
        self.shuffled_response_order = {}
        self.paragraph_map = {
            "openai": self.paragraph_openai,
            "aws": self.paragraph_aws,
            "google": self.paragraph_google,
            "mtk": self.paragraph_mtk,
        }

    def get_llm_response(self, player_logs):
        agents_responses = {
            "openai": self.openai_agent.get_story(player_logs),
            "aws": self.aws_agent.get_story(player_logs),
            "google": self.google_agent.get_story(player_logs),
            "mtk": self.mtk_agent.get_story(player_logs),
        }
        self.paragraph_openai = agents_responses["openai"]
        self.paragraph_aws = agents_responses["aws"]
        self.paragraph_google = agents_responses["google"]
        self.paragraph_mtk = agents_responses["mtk"]
        response_items = list(agents_responses.items())
        random.shuffle(response_items)

        self.shuffled_response_order = {
            str(index): agent for index, (agent, _) in enumerate(response_items)
        }

        shuffled_responses = tuple(response for _, response in response_items)
        return (
            [(None, shuffled_responses[0])],
            [(None, shuffled_responses[1])],
            [(None, shuffled_responses[2])],
            [(None, shuffled_responses[3])],
        )

    def set_player_name(self, player_name, player_backend_user_id):
        self.player_backend_user_id = player_backend_user_id
        self.player_name = player_name

    def set_background_url(self, background_url):
        self.background_url = background_url

    def set_player_backend_user_id(self, player_backend_user_id):
        self.player_backend_user_id = player_backend_user_id

    def set_player_selected_character(self, player_selected_character):
        character_map = {
            "露米娜": "0",
            "索拉拉": "1",
            "薇丹特": "2",
            "蔚藍": "3",
        }
        self.player_selected_character = player_selected_character
        self.player_selected_model = self.shuffled_response_order[
            character_map[player_selected_character]
        ]
        self.player_selected_paragraph = self.get_paragraph_by_model(
            self.player_selected_model
        )

    def get_paragraph_by_model(self, model):
        return getattr(self, f"paragraph_{model}", None)

    def create_certificate(self):
        image_url = self.openai_agent.get_background()
        self.set_background_url(image_url)
        source_file = ImageProcessor.generate_reward(
            image_url,
            self.player_name,
            self.player_selected_paragraph,
            self.player_backend_user_id,
        )

        public_url = self.upload_blob_and_get_public_url(
            "mes_completion_rewards", source_file, f"2023_mes/{source_file}"
        )
        self.player_certificate_url = public_url

        return gr.Image(public_url, visible=True, elem_id="certificate")

    def to_dict(self):
        return {
            "player_backend_user_id": self.player_backend_user_id,
            "player_name": self.player_name,
            "background_url": self.background_url,
            "player_selected_model": self.player_selected_model,
            "player_selected_paragraph": self.player_selected_paragraph,
            "paragraph_openai": self.paragraph_openai,
            "paragraph_aws": self.paragraph_aws,
            "paragraph_google": self.paragraph_google,
            "paragraph_mtk": self.paragraph_mtk,
            "player_certificate_url": self.player_certificate_url,
            "created_at_date": datetime.now().date(),
        }

    def insert_data_into_bigquery(self, client, dataset_id, table_id, rows_to_insert):
        table_ref = client.dataset(dataset_id).table(table_id)
        table = client.get_table(table_ref)

        errors = client.insert_rows(table, rows_to_insert)

        if errors:
            logging.info("Errors occurred while inserting rows:")
            for error in errors:
                print(error)
        else:
            logging.info(f"Inserted {len(rows_to_insert)} rows successfully.")

    def complete_reward(
        self,
    ):
        insert_row = self.to_dict()
        self.insert_data_into_bigquery(
            gbq_client, "streaming_log", "log_mes_completion_rewards", [insert_row]
        )
        logging.info(
            f"Player {insert_row['player_backend_user_id']} rendered successfully."
        )

        with open("./data/completion_reward_issue_status.json") as f:
            completion_reward_issue_status_dict = json.load(f)

        completion_reward_issue_status_dict[
            insert_row["player_backend_user_id"]
        ] = self.player_certificate_url

        with open("./data/completion_reward_issue_status.json", "w") as f:
            json.dump(completion_reward_issue_status_dict, f)

    def upload_blob_and_get_public_url(
        self, bucket_name, source_file_name, destination_blob_name
    ):
        """Uploads a file to the bucket and makes it publicly accessible."""
        # Initialize a storage client
        bucket = gcs_client.bucket(bucket_name)
        blob = bucket.blob(destination_blob_name)

        # Upload the file
        blob.upload_from_filename(source_file_name)

        # The public URL can be used to directly access the uploaded file via HTTP
        public_url = blob.public_url

        logging.info(f"File {source_file_name} uploaded to {destination_blob_name}.")

        return public_url


class OpenAIAgent:
    def __init__(self):
        self.temperature = 0.8
        self.frequency_penalty = 0
        self.presence_penalty = 0
        self.max_tokens = 1024

    def get_story(self, user_log):
        system_prompt = """
            我正在舉辦一個學習型的活動,我為學生設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請
            - 以「你」稱呼學生
            - 請用 500 字以內的短篇故事
            - 試著合併故事記錄成一段連貫、有吸引力的故事
            - 請使用 zh_TW
        """

        user_log = f"""
            ```{user_log}
            ```
        """

        messages = [
            {
                "role": "system",
                "content": f"{system_prompt}",
            },
            {
                "role": "user",
                "content": f"{user_log}",
            },
        ]

        client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        response = None

        retry_attempts = 0
        while retry_attempts < 5:
            try:
                response = client.chat.completions.create(
                    model="gpt-3.5-turbo",
                    messages=messages,
                    temperature=self.temperature,
                    max_tokens=self.max_tokens,
                    frequency_penalty=self.frequency_penalty,
                    presence_penalty=self.presence_penalty,
                )
                chinese_converter = OpenCC("s2tw")
                return chinese_converter.convert(response.choices[0].message.content)

            except Exception as e:
                retry_attempts += 1
                logging.error(f"OpenAI Attempt {retry_attempts}: {e}")
                time.sleep(1 * retry_attempts)

    def get_background(self):
        client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        image_url = None

        retry_attempts = 0
        while retry_attempts < 5:
            try:
                logging.info("Generating image...")
                response = client.images.generate(
                    model="dall-e-3",
                    prompt="Create an image in a retro Ghibli style, with a focus on a universe theme. The artwork should maintain the traditional hand-drawn animation look characteristic of Ghibli and with vibrant color. Imagine a scene set in outer space or a fantastical cosmic environment, rich with vibrant and varied color palettes to capture the mystery and majesty of the universe. The background should be detailed, showcasing stars, planets, and nebulae, blending the Ghibli style's nostalgia and emotional depth with the awe-inspiring aspects of space. The overall feel should be timeless, merging the natural wonder of the cosmos with the storytelling and emotional resonance typical of the retro Ghibli aesthetic. Soft lighting and gentle shading should be used to enhance the dreamlike, otherworldly quality of the scene.",
                    size="1024x1024",
                    quality="standard",
                    n=1,
                )

                image_url = response.data[0].url
                return image_url

            except Exception as e:
                retry_attempts += 1
                logging.error(f"DALLE Attempt {retry_attempts}: {e}")
                time.sleep(1 * retry_attempts)  # exponential backoff


class AWSAgent:
    def get_story(self, user_log):
        system_prompt = """
            我正在舉辦一個學習型的活動,我為學生設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請
            - 以「你」稱呼學生
            - 請用 500 字以內的短篇故事
            - 試著合併故事記錄成一段連貫、有吸引力的故事
            - 請使用 zh_TW
        """

        user_log = f"""
            ```{user_log}
            ```
        """
        client = AnthropicBedrock(
            aws_access_key=os.getenv("AWS_ACCESS_KEY"),
            aws_secret_key=os.getenv("AWS_SECRET_KEY"),
            aws_region="us-west-2",
        )

        retry_attempts = 0
        while retry_attempts < 5:
            try:
                completion = client.completions.create(
                    model="anthropic.claude-v2",
                    max_tokens_to_sample=1024,
                    prompt=f"{anthropic_bedrock.HUMAN_PROMPT}{system_prompt},以下是我的故事紀錄```{user_log}``` {anthropic_bedrock.AI_PROMPT}",
                )
                chinese_converter = OpenCC("s2tw")
                return chinese_converter.convert(completion.completion)

            except Exception as e:
                retry_attempts += 1
                logging.error(f"AWS Attempt {retry_attempts}: {e}")
                time.sleep(1 * retry_attempts)


class GoogleAgent:
    from google.cloud import aiplatform
    from vertexai.preview.generative_models import GenerativeModel

    SERVICE_ACCOUNT_INFO = os.getenv("GBQ_TOKEN")
    service_account_info_dict = json.loads(SERVICE_ACCOUNT_INFO)
    SCOPES = ["https://www.googleapis.com/auth/cloud-platform"]

    creds = Credentials.from_service_account_info(
        service_account_info_dict, scopes=SCOPES
    )
    aiplatform.init(
        project="junyiacademy",
        service_account=service_account_info_dict,
        credentials=creds,
    )

    gemini_pro_model = GenerativeModel("gemini-pro")

    def get_story(self, user_log):
        system_prompt = """
                    我正在舉辦一個學習型的活動,我為學生設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請
                    - 以「你」稱呼學生
                    - 請用 500 字以內的短篇故事
                    - 試著合併故事記錄成一段連貫、有吸引力的故事
                    - 請使用 zh_TW
                """

        user_log = f"""
            ```{user_log}
            ```
        """

        retry_attempts = 0
        while retry_attempts < 5:
            try:
                logging.info("Google Generating response...")
                model_response = self.gemini_pro_model.generate_content(
                    f"{system_prompt}, 以下是我的冒險故事 ```{user_log}```"
                )

                chinese_converter = OpenCC("s2tw")

                return chinese_converter.convert(
                    model_response.candidates[0].content.parts[0].text
                )

            except Exception as e:
                retry_attempts += 1
                logging.error(f"Google Attempt {retry_attempts}: {e}")
                time.sleep(1 * retry_attempts)


class MTKAgent:
    def get_story(self, user_log):
        system_prompt = """
            我正在舉辦一個學習型的活動,我為學生設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請
            - 以「你」稱呼學生
            - 請用 500 字以內的短篇故事
            - 試著合併故事記錄成一段連貫、有吸引力的故事
            - 請使用 zh_TW
        """

        user_log = f"""
            ```{user_log}
            ```
        """

        BASE_URL = "http://35.229.245.251:8008/v1"
        TOKEN = os.getenv("MTK_TOKEN")
        MODEL_NAME = "model7-c-chat"
        TEMPERATURE = 1
        MAX_TOKENS = 1024
        TOP_P = 0
        PRESENCE_PENALTY = 0
        FREQUENCY_PENALTY = 0
        message = f"{system_prompt}, 以下是我的冒險故事 ```{user_log}```"
        url = os.path.join(BASE_URL, "chat/completions")
        headers = {
            "accept": "application/json",
            "Authorization": f"Bearer {TOKEN}",
            "Content-Type": "application/json",
        }
        data = {
            "model": MODEL_NAME,
            "messages": str(message),
            "temperature": TEMPERATURE,
            "n": 1,
            "max_tokens": MAX_TOKENS,
            "stop": "",
            "top_p": TOP_P,
            "logprobs": 0,
            "echo": False,
            "presence_penalty": PRESENCE_PENALTY,
            "frequency_penalty": FREQUENCY_PENALTY,
        }

        retry_attempts = 0
        while retry_attempts < 5:
            try:
                response = requests.post(
                    url, headers=headers, data=json.dumps(data)
                ).json()
                response_text = response["choices"][0]["message"]["content"]

                matched_content = re.search("```(.+)", response_text, re.DOTALL)
                extracted_content = (
                    matched_content.group(1).strip() if matched_content else None
                )

                chinese_converter = OpenCC("s2tw")

                if extracted_content:
                    return chinese_converter.convert(extracted_content)
                else:
                    return chinese_converter.convert(response_text)

            except Exception as e:
                retry_attempts += 1
                logging.error(f"MTK Attempt {retry_attempts}: {e}")
                time.sleep(1 * retry_attempts)


class ImageProcessor:
    @staticmethod
    def draw_shadow(
        image, box, radius, offset=(10, 10), shadow_color=(0, 0, 0, 128), blur_radius=5
    ):
        shadow_image = Image.new("RGBA", image.size, (0, 0, 0, 0))
        shadow_draw = ImageDraw.Draw(shadow_image)
        shadow_box = [
            box[0] + offset[0],
            box[1] + offset[1],
            box[2] + offset[0],
            box[3] + offset[1],
        ]
        shadow_draw.rounded_rectangle(shadow_box, fill=shadow_color, radius=radius)
        shadow_image = shadow_image.filter(ImageFilter.GaussianBlur(blur_radius))
        image.paste(shadow_image, (0, 0), shadow_image)

    @staticmethod
    def generate_reward(url, player_name, paragraph, player_backend_user_id):
        retry_attempts = 0
        while retry_attempts < 5:
            try:
                response = requests.get(url)
                break
            except requests.RequestException as e:
                retry_attempts += 1
                logging.error(f"Attempt {retry_attempts}: {e}")
                time.sleep(1 * retry_attempts)  # exponential backoff

        image_bytes = io.BytesIO(response.content)
        img = Image.open(image_bytes)

        tmp_img = Image.new("RGBA", img.size, (0, 0, 0, 0))
        draw = ImageDraw.Draw(tmp_img)

        # Draw the box
        left, right = 50, img.width - 50
        box_height = 600
        top = (img.height - box_height) // 2
        bottom = (img.height + box_height) // 2
        border_radius = 20

        # Draw the rounded rectangle
        fill_color = (255, 255, 255, 200)
        draw.rounded_rectangle(
            [left, top, right, bottom],
            fill=fill_color,
            outline=None,
            radius=border_radius,
        )

        img.paste(Image.alpha_composite(img.convert("RGBA"), tmp_img), (0, 0), tmp_img)

        draw = ImageDraw.Draw(img)

        # Draw the text
        title_font = ImageFont.truetype("NotoSansTC-Bold.ttf", 34)
        body_font = ImageFont.truetype("NotoSansTC-Light.ttf", 12)

        # Title text
        title = f"光束守護者 - {player_name} 的冒險故事"
        title_x, title_y = left + 20, top + 20  # Adjust padding as needed
        draw.text((title_x, title_y), title, font=title_font, fill="black")

        # Paragraph text with newlines
        body_x, body_y = left + 20, title_y + 60  # Adjust position as needed

        for line in paragraph.split("\n"):
            wrapped_lines = textwrap.wrap(line, width=73)
            for wrapped_line in wrapped_lines:
                draw.text((body_x, body_y), wrapped_line, font=body_font, fill="black")
                body_y += 30

        # Save the image with the text

        def get_md5_hash(text):
            return hashlib.md5(text.encode("utf-8")).hexdigest()

        updated_image_path = f"certificate_{get_md5_hash(player_backend_user_id)}.png"
        img.save(updated_image_path)

        return updated_image_path