Spaces:
Runtime error
Runtime error
File size: 21,020 Bytes
6da2189 49c69e8 9fc2574 49c69e8 04d4d07 9fc2574 9247395 9fc2574 9247395 9fc2574 55bfc51 9fc2574 58ca927 9fc2574 58ca927 9fc2574 58ca927 9fc2574 58ca927 9fc2574 55bfc51 9fc2574 49c69e8 e602685 9fc2574 fc379d8 49c69e8 e602685 49c69e8 e602685 9fc2574 08770df 9fc2574 08770df 9fc2574 08770df cecb3d6 08770df 9fc2574 06c55e8 e602685 06c55e8 49c69e8 6da2189 49c69e8 6da2189 49c69e8 6da2189 c9928a7 49c69e8 c9928a7 49c69e8 6da2189 49c69e8 06c55e8 fc379d8 cecb3d6 49c69e8 af39750 f9410ef af39750 f9410ef 08770df f9410ef 08770df af39750 08770df fd8f4d5 04d4d07 73e79dc 7877c98 49c69e8 f9410ef 49c69e8 e602685 49c69e8 4527b8b 49c69e8 4527b8b e602685 49c69e8 e602685 9fc2574 e602685 57320b0 9fc2574 57320b0 e602685 77daaa0 9fc2574 06c55e8 9fc2574 08770df 77daaa0 08770df d0546cd 73e79dc 08770df fc379d8 77daaa0 49c69e8 e602685 9fc2574 fc379d8 49c69e8 e602685 d0546cd e602685 9fc2574 d0546cd 9fc2574 d0546cd 49c69e8 06c55e8 8278e6d 5a0d186 49c69e8 6da2189 49c69e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
from diffusers import CycleDiffusionPipeline, DDIMScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import ptp_utils
import seq_aligner
import torch.nn.functional as nnf
from typing import Optional, Union, Tuple, List, Callable, Dict
import abc
LOW_RESOURCE = False
MAX_NUM_WORDS = 77
is_colab = utils.is_google_colab()
colab_instruction = "" if is_colab else """
<p>You can skip the queue using Colab: <a href="https://colab.research.google.com/gist/ChenWu98/0aa4fe7be80f6b45d3d055df9f14353a/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>"""
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id_or_path = "CompVis/stable-diffusion-v1-4"
device_print = "GPU π₯" if torch.cuda.is_available() else "CPU π₯Ά"
device = "cuda" if torch.cuda.is_available() else "cpu"
if is_colab:
scheduler = DDIMScheduler.from_config(model_id_or_path, subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, scheduler=scheduler, torch_dtype=torch_dtype)
else:
import streamlit as st
scheduler = DDIMScheduler.from_config(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], scheduler=scheduler, torch_dtype=torch_dtype)
tokenizer = pipe.tokenizer
if torch.cuda.is_available():
pipe = pipe.to("cuda")
class LocalBlend:
def __call__(self, x_t, attention_store):
k = 1
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps]
maps = torch.cat(maps, dim=1)
maps = (maps * self.alpha_layers).sum(-1).mean(1)
mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = nnf.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.threshold)
mask = (mask[:1] + mask[1:]).to(x_t.dtype)
x_t = x_t[:1] + mask * (x_t - x_t[:1])
return x_t
def __init__(self, prompts: List[str], words: [List[List[str]]], threshold=.3):
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
for i, (prompt, words_) in enumerate(zip(prompts, words)):
if type(words_) is str:
words_ = [words_]
for word in words_:
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
alpha_layers[i, :, :, :, :, ind] = 1
self.alpha_layers = alpha_layers.to(device).to(torch_dtype)
self.threshold = threshold
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return self.num_att_layers if LOW_RESOURCE else 0
@abc.abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
if LOW_RESOURCE:
attn = self.forward(attn, is_cross, place_in_unet)
else:
h = attn.shape[0]
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class EmptyControl(AttentionControl):
def forward(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
class AttentionControlEdit(AttentionStore, abc.ABC):
def step_callback(self, x_t):
if self.local_blend is not None:
x_t = self.local_blend(x_t, self.attention_store)
return x_t
def replace_self_attention(self, attn_base, att_replace):
if att_replace.shape[2] <= 16 ** 2:
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
else:
return att_replace
@abc.abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
h = attn.shape[0] // self.batch_size
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_repalce = attn[0], attn[1:]
if is_cross:
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_replace_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
attn[1:] = attn_replace_new
else:
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
def __init__(self, prompts, num_steps: int,
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
self_replace_steps: Union[float, Tuple[float, float]],
local_blend: Optional[LocalBlend]):
super(AttentionControlEdit, self).__init__()
self.batch_size = len(prompts)
self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device).to(torch_dtype)
if type(self_replace_steps) is float:
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
self.local_blend = local_blend
class AttentionReplace(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
local_blend: Optional[LocalBlend] = None):
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device).to(torch_dtype)
class AttentionRefine(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
return attn_replace
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
local_blend: Optional[LocalBlend] = None):
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
self.mapper, alphas = self.mapper.to(device).to(torch_dtype), alphas.to(device).to(torch_dtype)
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]]):
if type(word_select) is int or type(word_select) is str:
word_select = (word_select,)
equalizer = torch.ones(len(values), 77)
values = torch.tensor(values, dtype=torch_dtype)
for word in word_select:
inds = ptp_utils.get_word_inds(text, word, tokenizer)
equalizer[:, inds] = values
return equalizer
def inference(source_prompt, target_prompt, source_guidance_scale=1, guidance_scale=5, num_inference_steps=100,
width=512, height=512, seed=0, img=None, strength=0.7,
cross_attention_control="None", cross_replace_steps=0.8, self_replace_steps=0.4):
torch.manual_seed(seed)
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)))
# create the CAC controller.
if cross_attention_control == "Replace":
controller = AttentionReplace([source_prompt, target_prompt],
num_inference_steps,
cross_replace_steps=cross_replace_steps,
self_replace_steps=self_replace_steps,
)
ptp_utils.register_attention_control(pipe, controller)
elif cross_attention_control == "Refine":
controller = AttentionRefine([source_prompt, target_prompt],
num_inference_steps,
cross_replace_steps=cross_replace_steps,
self_replace_steps=self_replace_steps,
)
ptp_utils.register_attention_control(pipe, controller)
elif cross_attention_control == "None":
controller = EmptyControl()
ptp_utils.register_attention_control(pipe, controller)
else:
raise ValueError("Unknown cross_attention_control: {}".format(cross_attention_control))
results = pipe(prompt=target_prompt,
source_prompt=source_prompt,
init_image=img,
num_inference_steps=num_inference_steps,
eta=0.1,
strength=strength,
guidance_scale=guidance_scale,
source_guidance_scale=source_guidance_scale,
)
return replace_nsfw_images(results)
def replace_nsfw_images(results):
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images[0]
css = """.cycle-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.cycle-diffusion-div div h1{font-weight:900;margin-bottom:7px}.cycle-diffusion-div p{margin-bottom:10px;font-size:94%}.cycle-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="cycle-diffusion-div">
<div>
<h1>CycleDiffusion with Stable Diffusion</h1>
</div>
<p>
Demo for CycleDiffusion with Stable Diffusion. <br>
CycleDiffusion (<a href="https://arxiv.org/abs/2210.05559">π Paper link</a> | <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/cycle_diffusion">𧨠Pipeline doc</a>) is an image-to-image translation method that supports stochastic samplers for diffusion models. <br>
We also support the combination of CycleDiffusion and Cross Attention Control (CAC | <a href="https://arxiv.org/abs/2208.01626">π Paper link</a>). CAC is a technique to transfer the attention map from the source prompt to the target prompt. <br>
</p>
<p>
<b>Quick start</b>: <br>
1. Click one row of Examples at the end of this page. It will fill all inputs needed. <br>
2. Click the "Run CycleDiffusion" button. <br>
</p>
<p>
{colab_instruction}
Running on <b>{device_print}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
</p>
</div>
"""
)
with gr.Accordion("See Details", open=False):
gr.HTML(
f"""
<div class="cycle-diffusion-div">
<p>
<b>How to use:</b> <br>
1. Upload an image. <br>
2. Enter the source and target prompts. <br>
3. Select the source guidance scale (for "encoding") and the target guidance scale (for "decoding"). <br>
4. Select the strength (smaller strength means better content preservation). <br>
5 (optional). Configurate Cross Attention Control options (e.g., CAC type, cross replace steps, self replace steps). <br>
6 (optional). Configurate other options (e.g., image size, inference steps, random seed). <br>
7. Click the "Run CycleDiffusion" button. <br>
</p>
<p>
<b>Notes:</b> <br>
1. CycleDiffusion is likely to fail when drastic changes are intended (e.g., changing a large black car to red). <br>
2. The value of strength can be set larger when CAC is used. <br>
3. If CAC type is "Replace", the source and target prompts should differ in only one token; otherwise, an error will be raised. This is why we deliberately make some grammar mistakes in Examples.<br>
4. If CAC type is "Refine", the source prompt be a subsequence of the target prompt; otherwise, an error will be raised. <br>
</p>
<p>
<b>Runtimes:</b> <br>
1. 20s on A10G. <br>
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
img = gr.Image(label="Input image", height=512, tool="editor", type="pil")
image_out = gr.Image(label="Output image", height=512)
# gallery = gr.Gallery(
# label="Generated images", show_label=False, elem_id="gallery"
# ).style(grid=[1], height="auto")
with gr.Column(scale=45):
with gr.Tab("Edit options"):
with gr.Group():
with gr.Row():
source_prompt = gr.Textbox(label="Source prompt", placeholder="Source prompt describes the input image")
source_guidance_scale = gr.Slider(label="Source guidance scale", value=1, minimum=1, maximum=10)
with gr.Row():
target_prompt = gr.Textbox(label="Target prompt", placeholder="Target prompt describes the output image")
guidance_scale = gr.Slider(label="Target guidance scale", value=5, minimum=1, maximum=10)
with gr.Row():
strength = gr.Slider(label="Strength", value=0.7, minimum=0.5, maximum=1, step=0.01)
with gr.Row():
generate1 = gr.Button(value="Run CycleDiffusion")
with gr.Tab("CAC options"):
with gr.Group():
with gr.Row():
cross_attention_control = gr.Radio(label="CAC type", choices=["None", "Replace", "Refine"], value="None")
with gr.Row():
# If not "None", the following two parameters will be used.
cross_replace_steps = gr.Slider(label="Cross replace steps", value=0.8, minimum=0.0, maximum=1, step=0.01)
self_replace_steps = gr.Slider(label="Self replace steps", value=0.4, minimum=0.0, maximum=1, step=0.01)
with gr.Row():
generate2 = gr.Button(value="Run CycleDiffusion")
with gr.Tab("Other options"):
with gr.Group():
with gr.Row():
num_inference_steps = gr.Slider(label="Inference steps", value=100, minimum=25, maximum=500, step=1)
width = gr.Slider(label="Width", value=512, minimum=512, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=512, maximum=1024, step=8)
with gr.Row():
seed = gr.Slider(0, 2147483647, label='Seed', value=0, step=1)
with gr.Row():
generate3 = gr.Button(value="Run CycleDiffusion")
inputs = [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
width, height, seed, img, strength,
cross_attention_control, cross_replace_steps, self_replace_steps]
generate1.click(inference, inputs=inputs, outputs=image_out)
generate2.click(inference, inputs=inputs, outputs=image_out)
generate3.click(inference, inputs=inputs, outputs=image_out)
ex = gr.Examples(
[
["An astronaut riding a horse", "An astronaut riding an elephant", 1, 2, 100, 512, 512, 0, "images/astronaut_horse.png", 0.8, "None", 0, 0],
["An astronaut riding a horse", "An astronaut riding a elephant", 1, 2, 100, 512, 512, 0, "images/astronaut_horse.png", 0.9, "Replace", 0.15, 0.10],
["A black colored car.", "A blue colored car.", 1, 3, 100, 512, 512, 0, "images/black_car.png", 0.85, "None", 0, 0],
["A black colored car.", "A blue colored car.", 1, 5, 100, 512, 512, 0, "images/black_car.png", 0.95, "Replace", 0.8, 0.4],
["A black colored car.", "A red colored car.", 1, 5, 100, 512, 512, 0, "images/black_car.png", 1, "Replace", 0.8, 0.4],
["An aerial view of autumn scene.", "An aerial view of winter scene.", 1, 5, 100, 512, 512, 0, "images/mausoleum.png", 0.9, "None", 0, 0],
["An aerial view of autumn scene.", "An aerial view of winter scene.", 1, 5, 100, 512, 512, 0, "images/mausoleum.png", 1, "Replace", 0.8, 0.4],
["A green apple and a black backpack on the floor.", "A red apple and a black backpack on the floor.", 1, 7, 100, 512, 512, 0, "images/apple_bag.png", 0.9, "None", 0, 0],
["A green apple and a black backpack on the floor.", "A red apple and a black backpack on the floor.", 1, 7, 100, 512, 512, 0, "images/apple_bag.png", 0.9, "Replace", 0.8, 0.4],
["A hotel room with red flowers on the bed.", "A hotel room with a cat sitting on the bed.", 1, 4, 100, 512, 512, 0, "images/flower_hotel.png", 0.8, "None", 0, 0],
["A hotel room with red flowers on the bed.", "A hotel room with blue flowers on the bed.", 1, 5, 100, 512, 512, 0, "images/flower_hotel.png", 0.95, "None", 0, 0],
["A green apple and a black backpack on the floor.", "Two green apples and a black backpack on the floor.", 1, 5, 100, 512, 512, 0, "images/apple_bag.png", 0.89, "None", 0, 0],
],
[source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
width, height, seed, img, strength,
cross_attention_control, cross_replace_steps, self_replace_steps],
image_out, inference, cache_examples=True)
gr.Markdown('''
Space built with Diffusers 𧨠by HuggingFace π€.
[![Twitter Follow](https://img.shields.io/twitter/follow/ChenHenryWu?style=social)](https://twitter.com/ChenHenryWu)
![visitors](https://visitor-badge.glitch.me/badge?page_id=ChenWu98.CycleDiffusion)
''')
if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)
|