Spaces:
Running
Running
File size: 32,817 Bytes
45d6af3 b871fd6 a953180 6a8393c a953180 6a8393c b871fd6 a953180 a9bf7b9 a953180 a9bf7b9 a953180 a9bf7b9 b871fd6 a9bf7b9 b871fd6 a9bf7b9 a953180 12d0eea 6a8393c a953180 12d0eea a953180 12d0eea a953180 45d6af3 a953180 45d6af3 a953180 6a8393c a953180 45d6af3 a953180 45d6af3 a953180 12d0eea a953180 45d6af3 a953180 45d6af3 a953180 84bbd6a a953180 45d6af3 a953180 7d307ba a953180 45d6af3 a953180 1b33af5 b871fd6 a21a9e8 b871fd6 4f4356d b871fd6 4f4356d b871fd6 4f4356d b871fd6 4f4356d 4f0aaef b871fd6 4f4356d b871fd6 4f4356d b871fd6 1b33af5 260f3d0 1b33af5 f5f80ba 1b33af5 260f3d0 3226415 260f3d0 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 260f3d0 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 260f3d0 3226415 260f3d0 3226415 260f3d0 3226415 260f3d0 b871fd6 3226415 260f3d0 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 82fb410 a953180 45d6af3 b871fd6 a953180 b871fd6 a953180 82fb410 a953180 82fb410 a953180 b871fd6 3226415 b871fd6 a953180 82fb410 a953180 a9bf7b9 b871fd6 82fb410 b871fd6 45d6af3 b871fd6 a953180 1b33af5 a953180 1b33af5 b871fd6 1b33af5 b871fd6 a953180 b871fd6 a953180 82fb410 a953180 82fb410 a953180 a9bf7b9 b871fd6 a953180 b871fd6 1b33af5 b871fd6 260f3d0 45d6af3 6a8393c a7360b6 45d6af3 b871fd6 a7360b6 b871fd6 45d6af3 b871fd6 45d6af3 a0cad87 1b33af5 12d0eea 45d6af3 e1d6be0 45d6af3 0f570bc e1d6be0 45d6af3 54ac992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
import gradio as gr
import re
import pandas as pd
from io import StringIO
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from io import BytesIO
import re
from rdkit import Chem
class PeptideAnalyzer:
def __init__(self):
self.bond_patterns = [
(r'OC\(=O\)', 'ester'), # Ester bond
(r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond
(r'N[12]C\(=O\)', 'proline'), # Proline peptide bond
(r'NC\(=O\)', 'peptide'), # Standard peptide bond
(r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
]
def is_peptide(self, smiles):
"""Check if the SMILES represents a peptide structure"""
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return False
# Look for peptide bonds: NC(=O) pattern
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
if mol.HasSubstructMatch(peptide_bond_pattern):
return True
# Look for N-methylated peptide bonds: N(C)C(=O) pattern
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
if mol.HasSubstructMatch(n_methyl_pattern):
return True
return False
def is_cyclic(self, smiles):
"""
Determine if SMILES represents a cyclic peptide by checking head-tail connection.
Returns: (is_cyclic, peptide_cycles, aromatic_cycles)
"""
# First find aromatic rings
aromatic_cycles = []
for match in re.finditer(r'c[12]ccccc[12]', smiles):
number = match.group(0)[1]
if number not in aromatic_cycles:
aromatic_cycles.append(str(number))
# Find potential cycle numbers and their contexts
cycle_closures = []
# Look for cycle starts and corresponding ends
cycle_patterns = [
# Pattern pairs (start, end)
(r'[^\d](\d)[A-Z@]', r'C\1=O$'), # Classic C=O ending
(r'[^\d](\d)[A-Z@]', r'N\1C\(=O\)'), # N1C(=O) pattern
(r'[^\d](\d)[A-Z@]', r'N\1C$'), # Simple N1C ending
(r'[^\d](\d)C\(=O\)', r'N\1[A-Z]'), # Reverse connection
(r'H(\d)', r'N\1C'), # H1...N1C pattern
(r'[^\d](\d)(?:C|N|O)', r'(?:C|N)\1(?:\(|$)'), # Generic cycle closure
]
for start_pat, end_pat in cycle_patterns:
start_matches = re.finditer(start_pat, smiles)
for start_match in start_matches:
number = start_match.group(1)
if number not in aromatic_cycles: # Skip aromatic ring numbers
# Look for corresponding end pattern
end_match = re.search(end_pat.replace('\\1', number), smiles)
if end_match and end_match.start() > start_match.start():
cycle_closures.append(number)
break
# Remove duplicates and aromatic numbers
peptide_cycles = list(set(cycle_closures) - set(aromatic_cycles))
is_cyclic = len(peptide_cycles) > 0
return is_cyclic, peptide_cycles, aromatic_cycles
def split_on_bonds(self, smiles):
"""Split SMILES into segments with simplified Pro handling"""
positions = []
used = set()
# Find Gly pattern first
gly_pattern = r'NCC\(=O\)'
for match in re.finditer(gly_pattern, smiles):
if not any(p in range(match.start(), match.end()) for p in used):
positions.append({
'start': match.start(),
'end': match.end(),
'type': 'gly',
'pattern': match.group()
})
used.update(range(match.start(), match.end()))
for pattern, bond_type in self.bond_patterns:
for match in re.finditer(pattern, smiles):
if not any(p in range(match.start(), match.end()) for p in used):
positions.append({
'start': match.start(),
'end': match.end(),
'type': bond_type,
'pattern': match.group()
})
used.update(range(match.start(), match.end()))
# Sort by position
positions.sort(key=lambda x: x['start'])
# Create segments
segments = []
if positions:
# First segment
if positions[0]['start'] > 0:
segments.append({
'content': smiles[0:positions[0]['start']],
'bond_after': positions[0]['pattern']
})
# Process segments
for i in range(len(positions)-1):
current = positions[i]
next_pos = positions[i+1]
if current['type'] == 'gly':
segments.append({
'content': 'NCC(=O)',
'bond_before': positions[i-1]['pattern'] if i > 0 else None,
'bond_after': next_pos['pattern']
})
else:
content = smiles[current['end']:next_pos['start']]
if content:
segments.append({
'content': content,
'bond_before': current['pattern'],
'bond_after': next_pos['pattern']
})
# Last segment
if positions[-1]['end'] < len(smiles):
segments.append({
'content': smiles[positions[-1]['end']:],
'bond_before': positions[-1]['pattern']
})
return segments
def identify_residue(self, segment):
"""Identify residue with Pro reconstruction"""
content = segment['content']
mods = self.get_modifications(segment)
# Special handling for Pro: reconstruct the complete pattern
if (segment.get('bond_after') == 'N2C(=O)' and 'CCC' in content) or \
('CCCN2' in content and content.endswith('=O')): # End case
# Reconstruct the complete Pro pattern
if '[C@@H]2' in content or '[C@H]2' in content:
return 'Pro', mods
if ('C[C@H](CCCC)' in content or 'C[C@@H](CCCC)' in content) and 'CC(C)' not in content:
return 'Nle', mods
# Ornithine (Orn) - 3-carbon chain with NH2
if ('C[C@H](CCCN)' in content or 'C[C@@H](CCCN)' in content) and 'CC(C)' not in content:
return 'Orn', mods
# 2-Naphthylalanine (2Nal) - distinct from Phe pattern
if ('Cc3cc2ccccc2c3' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return '2Nal', mods
# Cyclohexylalanine (Cha) - already in your code but moved here for clarity
if 'N2CCCCC2' in content or 'CCCCC2' in content:
return 'Cha', mods
# Aminobutyric acid (Abu) - 2-carbon chain
if ('C[C@H](CC)' in content or 'C[C@@H](CC)' in content) and not any(p in content for p in ['CC(C)', 'CCCC', 'CCC(C)']):
return 'Abu', mods
# Pipecolic acid (Pip) - 6-membered ring like Pro
if ('N3CCCCC3' in content or 'CCCCC3' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Pip', mods
# Cyclohexylglycine (Chg) - direct cyclohexyl without CH2
if ('C[C@H](C1CCCCC1)' in content or 'C[C@@H](C1CCCCC1)' in content):
return 'Chg', mods
# 4-Fluorophenylalanine (4F-Phe)
if ('Cc2ccc(F)cc2' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return '4F-Phe', mods
# Regular residue identification
if ('NCC(=O)' in content) or (content == 'C'):
# Middle case - between bonds
if segment.get('bond_before') and segment.get('bond_after'):
if ('C(=O)N' in segment['bond_before'] or 'C(=O)N(C)' in segment['bond_before']):
return 'Gly', mods
# Terminal case - at the end
elif segment.get('bond_before') and segment.get('bond_before').startswith('C(=O)N'):
return 'Gly', mods
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content:
return 'Leu', mods
if '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content:
return 'Leu', mods
if ('C(C)C[C@H]' in content or 'C(C)C[C@@H]' in content) and 'CC(C)C' not in content:
return 'Ile', mods
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content:
return 'Thr', mods
if '[C@H](Cc2ccccc2)' in content or '[C@@H](Cc2ccccc2)' in content:
return 'Phe', mods
if '[C@H](C(C)C)' in content or '[C@@H](C(C)C)' in content:
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]']):
return 'Val', mods
if '[C@H](COC(C)(C)C)' in content or '[C@@H](COC(C)(C)C)' in content:
return 'O-tBu', mods
if ('[C@H](C)' in content or '[C@@H](C)' in content):
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O']):
return 'Ala', mods
# Tyrosine (Tyr) - 4-hydroxybenzyl side chain
if ('Cc2ccc(O)cc2' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Tyr', mods
# Tryptophan (Trp) - Indole side chain
if ('Cc2c[nH]c3ccccc23' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Trp', mods
# Serine (Ser) - Hydroxymethyl side chain
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
if not ('C(C)O' in content or 'COC' in content):
return 'Ser', mods
# Threonine (Thr) - 1-hydroxyethyl side chain
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content:
return 'Thr', mods
# Cysteine (Cys) - Thiol side chain
if '[C@H](CS)' in content or '[C@@H](CS)' in content:
return 'Cys', mods
# Methionine (Met) - Methylthioethyl side chain
if ('C[C@H](CCSC)' in content or 'C[C@@H](CCSC)' in content):
return 'Met', mods
# Asparagine (Asn) - Carbamoylmethyl side chain
if ('CC(=O)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Asn', mods
# Glutamine (Gln) - Carbamoylethyl side chain
if ('CCC(=O)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Gln', mods
# Aspartic acid (Asp) - Carboxymethyl side chain
if ('CC(=O)O' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Asp', mods
# Glutamic acid (Glu) - Carboxyethyl side chain
if ('CCC(=O)O' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Glu', mods
# Lysine (Lys) - 4-aminobutyl side chain
if ('C[C@H](CCCCN)' in content or 'C[C@@H](CCCCN)' in content):
return 'Lys', mods
# Arginine (Arg) - 3-guanidinopropyl side chain
if ('CCCNC(=N)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Arg', mods
# Histidine (His) - Imidazole side chain
if ('Cc2cnc[nH]2' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'His', mods
return None, mods
def get_modifications(self, segment):
"""Get modifications based on bond types"""
mods = []
if segment.get('bond_after'):
if 'N(C)' in segment['bond_after'] or segment['bond_after'].startswith('C(=O)N(C)'):
mods.append('N-Me')
if 'OC(=O)' in segment['bond_after']:
mods.append('O-linked')
return mods
def analyze_structure(self, smiles):
"""Main analysis function"""
print("\nAnalyzing structure:", smiles)
# Split into segments
segments = self.split_on_bonds(smiles)
print("\nSegment Analysis:")
sequence = []
for i, segment in enumerate(segments):
print(f"\nSegment {i}:")
print(f"Content: {segment['content']}")
print(f"Bond before: {segment.get('bond_before', 'None')}")
print(f"Bond after: {segment.get('bond_after', 'None')}")
residue, mods = self.identify_residue(segment)
if residue:
if mods:
sequence.append(f"{residue}({','.join(mods)})")
else:
sequence.append(residue)
print(f"Identified as: {residue}")
print(f"Modifications: {mods}")
else:
print(f"Warning: Could not identify residue in segment: {segment['content']}")
# Check if cyclic
is_cyclic = 'N1' in smiles or 'N2' in smiles
final_sequence = f"cyclo({'-'.join(sequence)})" if is_cyclic else '-'.join(sequence)
print(f"\nFinal sequence: {final_sequence}")
return final_sequence
"""
def annotate_cyclic_structure(mol, sequence):
'''Create annotated 2D structure with clear, non-overlapping residue labels'''
# Generate 2D coordinates
# Generate 2D coordinates
AllChem.Compute2DCoords(mol)
# Create drawer with larger size for annotations
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Even larger size
# Get residue list and reverse it to match structural representation
if sequence.startswith('cyclo('):
residues = sequence[6:-1].split('-')
else:
residues = sequence.split('-')
residues = list(reversed(residues)) # Reverse the sequence
# Draw molecule first to get its bounds
drawer.drawOptions().addAtomIndices = False
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Convert to PIL Image
img = Image.open(BytesIO(drawer.GetDrawingText()))
draw = ImageDraw.Draw(img)
try:
# Try to use DejaVuSans as it's commonly available on Linux systems
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
except OSError:
try:
# Fallback to Arial if available (common on Windows)
font = ImageFont.truetype("arial.ttf", 60)
small_font = ImageFont.truetype("arial.ttf", 60)
except OSError:
# If no TrueType fonts are available, fall back to default
print("Warning: TrueType fonts not available, using default font")
font = ImageFont.load_default()
small_font = ImageFont.load_default()
# Get molecule bounds
conf = mol.GetConformer()
positions = []
for i in range(mol.GetNumAtoms()):
pos = conf.GetAtomPosition(i)
positions.append((pos.x, pos.y))
x_coords = [p[0] for p in positions]
y_coords = [p[1] for p in positions]
min_x, max_x = min(x_coords), max(x_coords)
min_y, max_y = min(y_coords), max(y_coords)
# Calculate scaling factors
scale = 150 # Increased scale factor
center_x = 1000 # Image center
center_y = 1000
# Add residue labels in a circular arrangement around the structure
n_residues = len(residues)
radius = 700 # Distance of labels from center
# Start from the rightmost point (3 o'clock position) and go counterclockwise
# Offset by -3 positions to align with structure
offset = 0 # Adjust this value to match the structure alignment
for i, residue in enumerate(residues):
# Calculate position in a circle around the structure
# Start from 0 (3 o'clock) and go counterclockwise
angle = -(2 * np.pi * ((i + offset) % n_residues) / n_residues)
# Calculate label position
label_x = center_x + radius * np.cos(angle)
label_y = center_y + radius * np.sin(angle)
# Draw residue label
text = f"{i+1}. {residue}"
bbox = draw.textbbox((label_x, label_y), text, font=font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((label_x, label_y), text,
font=font, fill='black', anchor="mm")
# Add sequence at the top with white background
seq_text = f"Sequence: {sequence}"
bbox = draw.textbbox((center_x, 100), seq_text, font=small_font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((center_x, 100), seq_text,
font=small_font, fill='black', anchor="mm")
return img
"""
def annotate_cyclic_structure(mol, sequence):
"""Create structure visualization with just the sequence header"""
# Generate 2D coordinates
AllChem.Compute2DCoords(mol)
# Create drawer with larger size for annotations
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000)
# Draw molecule first
drawer.drawOptions().addAtomIndices = False
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Convert to PIL Image
img = Image.open(BytesIO(drawer.GetDrawingText()))
draw = ImageDraw.Draw(img)
try:
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
except OSError:
try:
small_font = ImageFont.truetype("arial.ttf", 60)
except OSError:
print("Warning: TrueType fonts not available, using default font")
small_font = ImageFont.load_default()
# Add just the sequence header at the top
seq_text = f"Sequence: {sequence}"
bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((1000, 100), seq_text,
font=small_font, fill='black', anchor="mm")
return img
def create_enhanced_linear_viz(sequence, smiles):
"""Create an enhanced linear representation using PeptideAnalyzer"""
analyzer = PeptideAnalyzer() # Create analyzer instance
# Create figure with two subplots
fig = plt.figure(figsize=(15, 10))
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2])
ax_struct = fig.add_subplot(gs[0])
ax_detail = fig.add_subplot(gs[1])
# Parse sequence and get residues
if sequence.startswith('cyclo('):
residues = sequence[6:-1].split('-')
else:
residues = sequence.split('-')
# Get segments using analyzer
segments = analyzer.split_on_bonds(smiles)
# Debug print
print(f"Number of residues: {len(residues)}")
print(f"Number of segments: {len(segments)}")
# Top subplot - Basic structure
ax_struct.set_xlim(0, 10)
ax_struct.set_ylim(0, 2)
num_residues = len(residues)
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0
# Draw basic structure
y_pos = 1.5
for i in range(num_residues):
x_pos = 0.5 + i * spacing
# Draw amino acid box
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4,
facecolor='lightblue', edgecolor='black')
ax_struct.add_patch(rect)
# Draw connecting bonds if not the last residue
if i < num_residues - 1:
segment = segments[i] if i < len(segments) else None
if segment:
# Determine bond type from segment info
bond_type = 'ester' if 'O-linked' in segment.get('bond_after', '') else 'peptide'
is_n_methylated = 'N-Me' in segment.get('bond_after', '')
bond_color = 'red' if bond_type == 'ester' else 'black'
linestyle = '--' if bond_type == 'ester' else '-'
# Draw bond line
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos],
color=bond_color, linestyle=linestyle, linewidth=2)
# Add bond type label
mid_x = x_pos + spacing/2
bond_label = f"{bond_type}"
if is_n_methylated:
bond_label += "\n(N-Me)"
ax_struct.text(mid_x, y_pos+0.1, bond_label,
ha='center', va='bottom', fontsize=10,
color=bond_color)
# Add residue label
ax_struct.text(x_pos, y_pos-0.5, residues[i],
ha='center', va='top', fontsize=14)
# Bottom subplot - Detailed breakdown
ax_detail.set_ylim(0, len(segments)+1)
ax_detail.set_xlim(0, 1)
# Create detailed breakdown
segment_y = len(segments) # Start from top
for i, segment in enumerate(segments):
y = segment_y - i
# Check if this is a bond or residue
residue, mods = analyzer.identify_residue(segment)
if residue:
text = f"Residue {i+1}: {residue}"
if mods:
text += f" ({', '.join(mods)})"
color = 'blue'
else:
# Must be a bond
text = f"Bond {i}: "
if 'O-linked' in segment.get('bond_after', ''):
text += "ester"
elif 'N-Me' in segment.get('bond_after', ''):
text += "peptide (N-methylated)"
else:
text += "peptide"
color = 'red'
# Add segment analysis
ax_detail.text(0.05, y, text, fontsize=12, color=color)
ax_detail.text(0.5, y, f"SMILES: {segment.get('content', '')}", fontsize=10, color='gray')
# If cyclic, add connection indicator
if sequence.startswith('cyclo('):
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos),
arrowprops=dict(arrowstyle='<->', color='red', lw=2))
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection',
ha='center', color='red', fontsize=14)
# Add titles and adjust layout
ax_struct.set_title("Peptide Structure Overview", pad=20)
ax_detail.set_title("Segment Analysis Breakdown", pad=20)
# Remove axes
for ax in [ax_struct, ax_detail]:
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
plt.tight_layout()
return fig
def process_input(smiles_input=None, file_obj=None, show_linear=False, show_segment_details=False):
"""Process input and create visualizations using PeptideAnalyzer"""
analyzer = PeptideAnalyzer()
# Handle direct SMILES input
if smiles_input:
smiles = smiles_input.strip()
# First check if it's a peptide using analyzer's method
if not analyzer.is_peptide(smiles):
return "Error: Input SMILES does not appear to be a peptide structure.", None, None
try:
# Create molecule
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return "Error: Invalid SMILES notation.", None, None
# Use analyzer to get sequence
segments = analyzer.split_on_bonds(smiles)
# Process segments and build sequence
sequence_parts = []
output_text = ""
# Only include segment analysis in output if requested
if show_segment_details:
output_text += "Segment Analysis:\n"
for i, segment in enumerate(segments):
output_text += f"\nSegment {i}:\n"
output_text += f"Content: {segment['content']}\n"
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n"
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n"
residue, mods = analyzer.identify_residue(segment)
if residue:
if mods:
sequence_parts.append(f"{residue}({','.join(mods)})")
else:
sequence_parts.append(residue)
output_text += f"Identified as: {residue}\n"
output_text += f"Modifications: {mods}\n"
else:
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n"
output_text += "\n"
else:
# Just build sequence without detailed analysis in output
for segment in segments:
residue, mods = analyzer.identify_residue(segment)
if residue:
if mods:
sequence_parts.append(f"{residue}({','.join(mods)})")
else:
sequence_parts.append(residue)
# Check if cyclic using analyzer's method
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
sequence = f"cyclo({'-'.join(sequence_parts)})" if is_cyclic else '-'.join(sequence_parts)
# Create cyclic structure visualization
img_cyclic = annotate_cyclic_structure(mol, sequence)
# Create linear representation if requested
img_linear = None
if show_linear:
fig_linear = create_enhanced_linear_viz(sequence, smiles)
buf = BytesIO()
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300)
buf.seek(0)
img_linear = Image.open(buf)
plt.close(fig_linear)
# Add summary to output
summary = "Summary:\n"
summary += f"Sequence: {sequence}\n"
summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
if is_cyclic:
summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
return summary + output_text, img_cyclic, img_linear
except Exception as e:
return f"Error processing SMILES: {str(e)}", None, None
# Handle file input
if file_obj is not None:
try:
# Handle file content
if hasattr(file_obj, 'name'):
with open(file_obj.name, 'r') as f:
content = f.read()
else:
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj)
output_text = ""
for line in content.splitlines():
smiles = line.strip()
if smiles:
# Check if it's a peptide
if not analyzer.is_peptide(smiles):
output_text += f"Skipping non-peptide SMILES: {smiles}\n"
continue
# Process this SMILES
segments = analyzer.split_on_bonds(smiles)
sequence_parts = []
# Add segment details if requested
if show_segment_details:
output_text += f"\nSegment Analysis for SMILES: {smiles}\n"
for i, segment in enumerate(segments):
output_text += f"\nSegment {i}:\n"
output_text += f"Content: {segment['content']}\n"
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n"
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n"
residue, mods = analyzer.identify_residue(segment)
if residue:
if mods:
sequence_parts.append(f"{residue}({','.join(mods)})")
else:
sequence_parts.append(residue)
output_text += f"Identified as: {residue}\n"
output_text += f"Modifications: {mods}\n"
else:
for segment in segments:
residue, mods = analyzer.identify_residue(segment)
if residue:
if mods:
sequence_parts.append(f"{residue}({','.join(mods)})")
else:
sequence_parts.append(residue)
# Get cyclicity and create sequence
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
sequence = f"cyclo({'-'.join(sequence_parts)})" if is_cyclic else '-'.join(sequence_parts)
output_text += f"\nSummary for SMILES: {smiles}\n"
output_text += f"Sequence: {sequence}\n"
output_text += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
if is_cyclic:
output_text += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
#output_text += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
output_text += "-" * 50 + "\n"
return output_text, None, None
except Exception as e:
return f"Error processing file: {str(e)}", None, None
return "No input provided.", None, None
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(
label="Enter SMILES string",
placeholder="Enter SMILES notation of peptide...",
lines=2
),
gr.File(
label="Or upload a text file with SMILES",
file_types=[".txt"]
),
gr.Checkbox(
label="Show linear representation",
value=False
),
gr.Checkbox(
label="Show segment details",
value=False
)
],
outputs=[
gr.Textbox(
label="Analysis Results",
lines=10
),
gr.Image(
label="2D Structure with Annotations",
type="pil"
),
gr.Image(
label="Linear Representation",
type="pil"
)
],
title="Peptide Structure Analyzer and Visualizer",
description="""
Analyze and visualize peptide structures from SMILES notation:
1. Validates if the input is a peptide structure
2. Determines if the peptide is cyclic
3. Parses the amino acid sequence
4. Creates 2D structure visualization with residue annotations
5. Optional linear representation
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings
Example SMILES strings (copy and paste):
```
CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O
```
```
C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O
```
```
CC(C)C[C@H]1C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)NCC(=O)N[C@H](C(=O)N2CCCCC2)CC(=O)N(C)CC(=O)N[C@@H]([C@@H](C)O)C(=O)N(C)[C@@H](C)C(=O)N[C@@H](COC(C)(C)C)C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)N1C
```
""",
flagging_mode="never"
)
# Launch the app
if __name__ == "__main__":
iface.launch() |