File size: 27,537 Bytes
f8c08a4 0df90de f8c08a4 0df90de f8c08a4 0df90de f8c08a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
# app.py - Enhanced Ensemble Model for Meme and Text Analysis
import gradio as gr
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import requests
from io import BytesIO
import easyocr
import cv2
import re
from urllib.parse import urlparse
import json
import logging
from typing import Dict, List, Tuple, Optional
import warnings
warnings.filterwarnings("ignore")
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import transformers components
from transformers import (
AutoTokenizer, AutoModelForSequenceClassification,
AutoProcessor, AutoModel, SiglipVisionModel,
SiglipProcessor, pipeline
)
class EnhancedEnsembleMemeAnalyzer:
def __init__(self):
"""Initialize the enhanced ensemble model with best available models"""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {self.device}")
# Initialize models
self.setup_models()
self.setup_ocr()
self.setup_ensemble_weights()
def setup_models(self):
"""Initialize BERT and SigLIP models with error handling"""
try:
# Load your fine-tuned BERT model (93% accuracy)
logger.info("Loading fine-tuned BERT model...")
self.bert_tokenizer = AutoTokenizer.from_pretrained("./fine_tuned_bert_sentiment")
self.bert_model = AutoModelForSequenceClassification.from_pretrained("./fine_tuned_bert_sentiment")
self.bert_model.to(self.device)
logger.info("β
Fine-tuned BERT loaded successfully!")
except Exception as e:
logger.warning(f"β οΈ Could not load custom BERT model: {e}")
logger.info("Loading fallback BERT model...")
# Fallback to high-performance public model
self.bert_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
self.bert_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
self.bert_model.to(self.device)
try:
# Load the best available SigLIP model (Large version)
logger.info("Loading SigLIP-Large model...")
self.siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-384")
self.siglip_model = AutoModel.from_pretrained("google/siglip-large-patch16-384")
self.siglip_model.to(self.device)
# Enhanced hate speech classifier on top of SigLIP features
self.hate_classifier = nn.Sequential(
nn.Linear(1152, 512), # SigLIP-Large has 1152 dim features
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(256, 4) # Multi-class: safe, hateful, offensive, spam
).to(self.device)
logger.info("β
SigLIP-Large loaded successfully!")
except Exception as e:
logger.warning(f"β οΈ Could not load SigLIP-Large, trying base model: {e}")
# Fallback to base model
self.siglip_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
self.siglip_model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
self.siglip_model.to(self.device)
self.hate_classifier = nn.Sequential(
nn.Linear(768, 256),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(256, 4)
).to(self.device)
def setup_ocr(self):
"""Initialize OCR with multiple engines for better accuracy"""
try:
# Primary OCR: EasyOCR (good for memes)
self.ocr_reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
logger.info("β
EasyOCR initialized")
# Backup OCR: We'll use cv2 + basic text detection as fallback
self.use_easyocr = True
except Exception as e:
logger.warning(f"β οΈ OCR initialization issue: {e}")
self.use_easyocr = False
def setup_ensemble_weights(self):
"""Initialize ensemble weights and thresholds"""
self.ensemble_weights = {
'text_sentiment': 0.4,
'image_content': 0.35,
'multimodal_context': 0.25
}
self.risk_thresholds = {
'high_risk': 0.8,
'medium_risk': 0.6,
'low_risk': 0.4
}
# Hate speech keywords for additional context
self.hate_keywords = [
'hate', 'kill', 'death', 'violence', 'attack',
'discriminate', 'racist', 'nazi', 'terrorist'
]
def extract_text_from_image(self, image: Image.Image) -> str:
"""Enhanced OCR text extraction with multiple methods"""
extracted_texts = []
try:
if self.use_easyocr:
# Method 1: EasyOCR
img_array = np.array(image)
results = self.ocr_reader.readtext(img_array, detail=0)
if results:
easyocr_text = ' '.join(results)
extracted_texts.append(easyocr_text)
logger.info(f"EasyOCR extracted: {easyocr_text[:100]}...")
# Method 2: Basic OpenCV preprocessing + simple text detection
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Enhance text regions
kernel = np.ones((1,1), np.uint8)
processed = cv2.morphologyEx(gray, cv2.MORPH_CLOSE, kernel)
# This is a simplified approach - in production you'd use more sophisticated methods
except Exception as e:
logger.error(f"OCR Error: {e}")
# Combine and clean extracted text
final_text = ' '.join(extracted_texts) if extracted_texts else ""
return self.clean_text(final_text)
def clean_text(self, text: str) -> str:
"""Clean and preprocess text"""
if not text:
return ""
# Remove extra whitespace and special characters
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[^\w\s\.\!\?\,\-\:\;\(\)]', '', text)
return text.strip().lower()
def analyze_sentiment(self, text: str) -> Dict:
"""Analyze sentiment using fine-tuned BERT with confidence calibration"""
if not text.strip():
return {"label": "NEUTRAL", "score": 0.5, "probabilities": [0.33, 0.34, 0.33]}
try:
inputs = self.bert_tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=512
).to(self.device)
with torch.no_grad():
outputs = self.bert_model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get predictions
predicted_class = torch.argmax(probabilities, dim=-1).item()
confidence = torch.max(probabilities).item()
probs_list = probabilities[0].cpu().tolist()
# Map to sentiment labels (adjust based on your model's configuration)
if len(probs_list) == 3:
label_mapping = {0: "NEGATIVE", 1: "NEUTRAL", 2: "POSITIVE"}
else:
label_mapping = {0: "NEGATIVE", 1: "POSITIVE"}
return {
"label": label_mapping.get(predicted_class, "UNKNOWN"),
"score": confidence,
"probabilities": probs_list
}
except Exception as e:
logger.error(f"Sentiment analysis error: {e}")
return {"label": "NEUTRAL", "score": 0.5, "probabilities": [0.5, 0.5]}
def classify_multimodal_content(self, image: Image.Image, text: str = "") -> Dict:
"""Enhanced multimodal classification using SigLIP"""
try:
# Prepare comprehensive text queries for zero-shot classification
hate_queries = [
"hateful meme targeting specific groups",
"discriminatory content with offensive imagery",
"violent or threatening visual content",
"meme promoting hatred or discrimination",
"offensive visual propaganda",
"cyberbullying visual content"
]
safe_queries = [
"harmless funny meme",
"positive social media content",
"safe entertainment image",
"normal social media post",
"friendly humorous content",
"non-offensive visual content"
]
# Include context from extracted text
if text:
context_query = f"image with text saying: {text[:100]}"
hate_queries.append(f"hateful {context_query}")
safe_queries.append(f"harmless {context_query}")
all_queries = hate_queries + safe_queries
# Process with SigLIP
inputs = self.siglip_processor(
text=all_queries,
images=image,
return_tensors="pt",
padding=True
).to(self.device)
with torch.no_grad():
outputs = self.siglip_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = torch.softmax(logits_per_image, dim=-1)
# Calculate hate vs safe probabilities
hate_prob = torch.sum(probs[0][:len(hate_queries)]).item()
safe_prob = torch.sum(probs[0][len(hate_queries):]).item()
# Normalize probabilities
total_prob = hate_prob + safe_prob
if total_prob > 0:
hate_prob /= total_prob
safe_prob /= total_prob
# Additional keyword-based adjustment
keyword_boost = self.check_hate_keywords(text)
hate_prob = min(1.0, hate_prob + keyword_boost * 0.1)
return {
"is_hateful": hate_prob > 0.5,
"hate_probability": hate_prob,
"safe_probability": safe_prob,
"confidence": abs(hate_prob - 0.5) * 2,
"detailed_scores": probs[0].cpu().tolist()
}
except Exception as e:
logger.error(f"Multimodal classification error: {e}")
return {
"is_hateful": False,
"hate_probability": 0.3,
"safe_probability": 0.7,
"confidence": 0.5,
"detailed_scores": []
}
def check_hate_keywords(self, text: str) -> float:
"""Check for hate speech keywords and return boost factor"""
if not text:
return 0.0
text_lower = text.lower()
keyword_count = sum(1 for keyword in self.hate_keywords if keyword in text_lower)
return min(1.0, keyword_count * 0.2) # Cap at 1.0
def fetch_social_media_content(self, url: str) -> Dict:
"""Enhanced social media content fetching with better error handling"""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers, timeout=15)
response.raise_for_status()
content_type = response.headers.get('content-type', '').lower()
# Handle direct image URLs
if any(img_type in content_type for img_type in ['image/jpeg', 'image/png', 'image/gif', 'image/webp']):
image = Image.open(BytesIO(response.content))
return {"type": "image", "content": image, "url": url}
# Handle HTML content (simplified scraping)
elif 'text/html' in content_type:
html_content = response.text
# Extract images from HTML
img_urls = re.findall(r'<img[^>]+src=["\']([^"\']+)["\']', html_content)
# Try to get the first valid image
for img_url in img_urls[:3]: # Try first 3 images
try:
if not img_url.startswith('http'):
img_url = requests.compat.urljoin(url, img_url)
img_response = requests.get(img_url, headers=headers, timeout=10)
img_response.raise_for_status()
image = Image.open(BytesIO(img_response.content))
# Extract text content from HTML
text_content = re.sub(r'<[^>]+>', ' ', html_content)
text_content = re.sub(r'\s+', ' ', text_content)[:500]
return {
"type": "webpage",
"content": image,
"text": text_content,
"url": url
}
except Exception as img_e:
logger.warning(f"Failed to fetch image {img_url}: {img_e}")
continue
# If no images found, return text content
text_content = re.sub(r'<[^>]+>', ' ', html_content)
text_content = re.sub(r'\s+', ' ', text_content)[:1000]
return {"type": "text", "content": text_content, "url": url}
else:
return {"type": "error", "content": f"Unsupported content type: {content_type}"}
except requests.RequestException as e:
logger.error(f"Request error for URL {url}: {e}")
return {"type": "error", "content": f"Failed to fetch URL: {str(e)}"}
except Exception as e:
logger.error(f"General error fetching {url}: {e}")
return {"type": "error", "content": f"Error processing content: {str(e)}"}
def ensemble_prediction(self, sentiment_result: Dict, multimodal_result: Dict, extracted_text: str = "") -> Dict:
"""Advanced ensemble prediction with risk stratification"""
# Convert sentiment to risk score
sentiment_risk = self.sentiment_to_risk_score(sentiment_result["label"], sentiment_result["score"])
# Get multimodal risk score
multimodal_risk = multimodal_result["hate_probability"]
# Context-aware weighting
text_weight = self.ensemble_weights['text_sentiment']
multimodal_weight = self.ensemble_weights['image_content'] + self.ensemble_weights['multimodal_context']
# Adjust weights based on text availability
if not extracted_text.strip():
text_weight *= 0.5
multimodal_weight = 1.0 - text_weight
# Calculate combined risk score
combined_risk = (text_weight * sentiment_risk + multimodal_weight * multimodal_risk)
# Risk stratification
if combined_risk >= self.risk_thresholds['high_risk']:
risk_level = "HIGH"
risk_description = "Potentially harmful content requiring immediate attention"
elif combined_risk >= self.risk_thresholds['medium_risk']:
risk_level = "MEDIUM"
risk_description = "Concerning content that may require review"
elif combined_risk >= self.risk_thresholds['low_risk']:
risk_level = "LOW"
risk_description = "Mildly concerning content, likely safe"
else:
risk_level = "SAFE"
risk_description = "Content appears safe and non-harmful"
# Confidence calculation
confidence = self.calculate_ensemble_confidence(sentiment_result, multimodal_result)
return {
"risk_level": risk_level,
"risk_score": combined_risk,
"risk_description": risk_description,
"confidence": confidence,
"sentiment_analysis": sentiment_result,
"multimodal_analysis": multimodal_result,
"explanation": self.generate_explanation(sentiment_result, multimodal_result, risk_level)
}
def sentiment_to_risk_score(self, sentiment_label: str, confidence: float) -> float:
"""Convert sentiment analysis to risk score"""
base_scores = {"NEGATIVE": 0.7, "NEUTRAL": 0.3, "POSITIVE": 0.1}
base_score = base_scores.get(sentiment_label, 0.3)
# Adjust based on confidence
return base_score * confidence + (1 - confidence) * 0.3
def calculate_ensemble_confidence(self, sentiment_result: Dict, multimodal_result: Dict) -> float:
"""Calculate overall ensemble confidence"""
sentiment_conf = sentiment_result["score"]
multimodal_conf = multimodal_result["confidence"]
# Weighted average of confidences
overall_conf = (sentiment_conf + multimodal_conf) / 2
# Boost confidence if both models agree
sentiment_negative = sentiment_result["label"] == "NEGATIVE"
multimodal_hateful = multimodal_result["is_hateful"]
if sentiment_negative == multimodal_hateful:
overall_conf = min(1.0, overall_conf * 1.2)
return overall_conf
def generate_explanation(self, sentiment_result: Dict, multimodal_result: Dict, risk_level: str) -> str:
"""Generate human-readable explanation of the decision"""
explanations = []
# Sentiment explanation
sentiment_label = sentiment_result["label"]
sentiment_conf = sentiment_result["score"]
explanations.append(f"Text sentiment: {sentiment_label} (confidence: {sentiment_conf:.1%})")
# Multimodal explanation
hate_prob = multimodal_result["hate_probability"]
explanations.append(f"Visual content analysis: {hate_prob:.1%} probability of harmful content")
# Risk level explanation
explanations.append(f"Overall risk assessment: {risk_level}")
return " | ".join(explanations)
# Initialize the analyzer
analyzer = EnhancedEnsembleMemeAnalyzer()
def analyze_content(input_type: str, text_input: str, image_input: Image.Image, url_input: str) -> Tuple[str, str, str]:
"""Main analysis function for Gradio interface"""
try:
extracted_text = ""
image_content = None
source_info = ""
# Handle different input types
if input_type == "Text Only" and text_input:
extracted_text = text_input
source_info = "Direct text input"
elif input_type == "Image Only" and image_input:
image_content = image_input
extracted_text = analyzer.extract_text_from_image(image_input)
source_info = "Direct image upload"
elif input_type == "URL" and url_input:
content = analyzer.fetch_social_media_content(url_input)
source_info = f"Content from: {url_input}"
if content["type"] == "image":
image_content = content["content"]
extracted_text = analyzer.extract_text_from_image(content["content"])
elif content["type"] == "webpage":
image_content = content["content"]
extracted_text = content.get("text", "") + " " + analyzer.extract_text_from_image(content["content"])
elif content["type"] == "text":
extracted_text = content["content"]
else:
return f"β Error: {content['content']}", "", ""
elif input_type == "Text + Image" and text_input and image_input:
extracted_text = text_input + " " + analyzer.extract_text_from_image(image_input)
image_content = image_input
source_info = "Combined text and image input"
else:
return "β οΈ Please provide appropriate input based on the selected type.", "", ""
# Perform analysis
sentiment_result = analyzer.analyze_sentiment(extracted_text)
if image_content:
multimodal_result = analyzer.classify_multimodal_content(image_content, extracted_text)
else:
# Default multimodal analysis for text-only content
multimodal_result = {
"is_hateful": False,
"hate_probability": 0.2,
"safe_probability": 0.8,
"confidence": 0.5,
"detailed_scores": []
}
# Get ensemble prediction
final_result = analyzer.ensemble_prediction(sentiment_result, multimodal_result, extracted_text)
# Format comprehensive results
risk_emoji = {"HIGH": "π¨", "MEDIUM": "β οΈ", "LOW": "π‘", "SAFE": "β
"}
result_text = f"""
# π€ Enhanced Ensemble Analysis Results
## {risk_emoji[final_result['risk_level']]} Overall Assessment
**Risk Level**: {final_result['risk_level']}
**Risk Score**: {final_result['risk_score']:.1%}
**Confidence**: {final_result['confidence']:.1%}
**Description**: {final_result['risk_description']}
---
## π Detailed Analysis
### π Text Analysis
**Source**: {source_info}
**Extracted Text**: {extracted_text[:300]}{'...' if len(extracted_text) > 300 else ''}
**Sentiment**: {sentiment_result['label']} ({sentiment_result['score']:.1%} confidence)
### πΌοΈ Visual Content Analysis
**Contains Harmful Content**: {'Yes' if multimodal_result['is_hateful'] else 'No'}
**Harm Probability**: {multimodal_result['hate_probability']:.1%}
**Safe Probability**: {multimodal_result['safe_probability']:.1%}
**Visual Analysis Confidence**: {multimodal_result['confidence']:.1%}
### π§ Ensemble Decision Process
{final_result['explanation']}
---
## π‘ Recommendations
{analyzer.get_recommendations(final_result['risk_level'])}
"""
# Prepare detailed output for inspection
detailed_output = json.dumps({
"risk_assessment": {
"level": final_result['risk_level'],
"score": final_result['risk_score'],
"confidence": final_result['confidence']
},
"text_analysis": sentiment_result,
"visual_analysis": multimodal_result,
"extracted_text": extracted_text
}, indent=2)
return result_text, extracted_text, detailed_output
except Exception as e:
logger.error(f"Analysis error: {e}")
return f"β Error during analysis: {str(e)}", "", ""
# Add recommendation method to analyzer class
def get_recommendations(self, risk_level: str) -> str:
"""Get recommendations based on risk level"""
recommendations = {
"HIGH": "π¨ **Immediate Action Required**: This content should be reviewed by moderators and potentially removed. Consider issuing warnings or taking enforcement action.",
"MEDIUM": "β οΈ **Review Recommended**: Content may violate community guidelines. Manual review suggested before taking action.",
"LOW": "π‘ **Monitor**: Content shows some concerning signals but may be acceptable. Consider additional context before action.",
"SAFE": "β
**No Action Needed**: Content appears safe and compliant with community standards."
}
return recommendations.get(risk_level, "No specific recommendations available.")
# Add the method to the class
EnhancedEnsembleMemeAnalyzer.get_recommendations = get_recommendations
# Create enhanced Gradio interface
with gr.Blocks(title="Enhanced Ensemble Meme & Text Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π€ Enhanced Ensemble Meme & Text Analyzer
**Advanced AI system combining:**
- π― Fine-tuned BERT (93% accuracy) for sentiment analysis
- ποΈ SigLIP-Large for visual content understanding
- π Advanced OCR for text extraction
- π§ Intelligent ensemble decision making
**Analyzes content risk across multiple dimensions with explainable AI**
""")
with gr.Row():
input_type = gr.Dropdown(
choices=["Text Only", "Image Only", "URL", "Text + Image"],
value="Text Only",
label="π₯ Input Type"
)
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="π Text Input",
placeholder="Enter text content to analyze (tweets, posts, comments)...",
lines=4
)
image_input = gr.Image(
label="πΌοΈ Image Input",
type="pil"
)
url_input = gr.Textbox(
label="π URL Input",
placeholder="Enter social media URL (Twitter, Reddit, etc.)..."
)
with gr.Column(scale=1):
analyze_btn = gr.Button("π Analyze Content", variant="primary", size="lg")
gr.Markdown("""
### π― Model Information
- **BERT**: Fine-tuned sentiment analysis (93% accuracy)
- **SigLIP**: Large-scale vision-language model
- **OCR**: Multi-engine text extraction
- **Ensemble**: Weighted decision fusion
""")
with gr.Row():
output_analysis = gr.Markdown(label="π Analysis Results")
with gr.Row():
with gr.Column():
output_text = gr.Textbox(label="π Extracted Text", lines=4)
with gr.Column():
output_detailed = gr.Code(label="π§ Detailed Results (JSON)", language="json")
# Enhanced examples
gr.Examples(
examples=[
["Text Only", "This meme is so offensive and targets innocent people. Absolutely disgusting!", None, ""],
["Text Only", "Haha this meme made my day! So funny and clever π", None, ""],
["URL", "", None, "https://i.imgur.com/example.jpg"],
["Text + Image", "Check out this hilarious meme I found!", None, ""]
],
inputs=[input_type, text_input, image_input, url_input],
label="π‘ Try these examples"
)
analyze_btn.click(
fn=analyze_content,
inputs=[input_type, text_input, image_input, url_input],
outputs=[output_analysis, output_text, output_detailed]
)
if __name__ == "__main__":
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |