File size: 7,605 Bytes
a784e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a11e9b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a784e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from typing import Dict, List, Any, Optional
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

class CSVQueryEngine:
    """Query engine for CSV data with multi-file support."""
    
    def __init__(self, index_manager, llm):
        """Initialize with index manager and language model."""
        self.index_manager = index_manager
        self.llm = llm
    
    def query(self, query_text: str) -> Dict[str, Any]:
        """Process a natural language query across CSV files."""
        # Find relevant CSV files
        relevant_csvs = self.index_manager.find_relevant_csvs(query_text)
        
        if not relevant_csvs:
            return {
                "answer": "No relevant CSV files found for your query.",
                "sources": []
            }
        
        # Prepare context from relevant CSVs
        context = self._prepare_context(query_text, relevant_csvs)
        
        # Generate prompt
        prompt = self._generate_prompt(query_text, context)
        
        # Get response from LLM
        response = self.llm.complete(prompt)
        
        # Return formatted response
        return {
            "answer": response.text,
            "sources": self._get_sources(relevant_csvs)
        }
    
    def _prepare_context(self, query: str, csv_ids: List[str]) -> str:
        """Prepare context from relevant CSV files with pre-calculated statistics."""
        context_parts = []
        calculated_answers = {}
        
        # Check for common statistical questions
        query_lower = query.lower()
        is_avg_question = "average" in query_lower or "mean" in query_lower
        is_max_question = "maximum" in query_lower or "max" in query_lower
        is_min_question = "minimum" in query_lower or "min" in query_lower
        
        # Extract potential column names from query
        query_words = set(query_lower.replace("?", "").replace(",", "").split())
        
        for csv_id in csv_ids:
            # Get metadata
            if csv_id not in self.index_manager.indexes:
                continue
                
            metadata = self.index_manager.indexes[csv_id]["metadata"]
            file_path = self.index_manager.indexes[csv_id]["path"]
            
            # Add CSV metadata
            context_parts.append(f"CSV File: {metadata['filename']}")
            context_parts.append(f"Columns: {', '.join(metadata['columns'])}")
            context_parts.append(f"Row Count: {metadata['row_count']}")
            
            # Add sample data and calculate statistics
            try:
                df = pd.read_csv(file_path)
                context_parts.append("\nSample Data:")
                context_parts.append(df.head(3).to_string())
                
                # Find relevant columns based on query
                column_matches = []
                for col in df.columns:
                    col_lower = col.lower()
                    # Check if column name appears in query or is similar to words in query
                    if col_lower in query_lower or any(word in col_lower for word in query_words):
                        column_matches.append(col)
                
                # If no direct matches, include all numeric columns
                if not column_matches:
                    column_matches = df.select_dtypes(include=['number']).columns.tolist()
                
                # Calculate statistics for matched columns
                for col in column_matches:
                    if pd.api.types.is_numeric_dtype(df[col]):
                        if is_avg_question:
                            avg_value = df[col].mean()
                            context_parts.append(f"\nThe average {col} is: {avg_value:.2f}")
                            calculated_answers[f"average_{col}"] = avg_value
                        
                        if is_max_question:
                            max_value = df[col].max()
                            context_parts.append(f"\nThe maximum {col} is: {max_value}")
                            calculated_answers[f"max_{col}"] = max_value
                        
                        if is_min_question:
                            min_value = df[col].min()
                            context_parts.append(f"\nThe minimum {col} is: {min_value}")
                            calculated_answers[f"min_{col}"] = min_value
                
            except Exception as e:
                context_parts.append(f"Error reading CSV: {str(e)}")
        
        # Add direct answer if calculated
        if calculated_answers:
            context_parts.append("\nDirect Answer:")
            for key, value in calculated_answers.items():
                context_parts.append(f"{key.replace('_', ' ')}: {value}")
        
        return "\n\n".join(context_parts)
    
    def _prepare_context1(self, query: str, csv_ids: List[str]) -> str:
        """Prepare context from relevant CSV files."""
        context_parts = []
        
        for csv_id in csv_ids:
            # Get metadata
            if csv_id not in self.index_manager.indexes:
                continue
                
            metadata = self.index_manager.indexes[csv_id]["metadata"]
            file_path = self.index_manager.indexes[csv_id]["path"]
            
            # Add CSV metadata
            context_parts.append(f"CSV File: {metadata['filename']}")
            context_parts.append(f"Columns: {', '.join(metadata['columns'])}")
            context_parts.append(f"Row Count: {metadata['row_count']}")
            
            # Add sample data
            try:
                df = pd.read_csv(file_path)
                context_parts.append("\nSample Data:")
                context_parts.append(df.head(5).to_string())
                
                # Add some basic statistics that might be relevant
                context_parts.append("\nNumeric Column Statistics:")
                numeric_cols = df.select_dtypes(include=['number']).columns
                for col in numeric_cols:
                    stats = df[col].describe()
                    context_parts.append(f"{col} - mean: {stats['mean']:.2f}, min: {stats['min']:.2f}, max: {stats['max']:.2f}")
            except Exception as e:
                context_parts.append(f"Error reading CSV: {str(e)}")
        
        return "\n\n".join(context_parts)
    
    def _generate_prompt(self, query: str, context: str) -> str:
        """Generate a prompt for the LLM."""
        return f"""You are an AI assistant specialized in analyzing CSV data.
Your goal is to help users understand their data and extract insights.

Below is information about CSV files that might help answer the query:

{context}

User Query: {query}

Please provide a comprehensive and accurate answer based on the data.
If calculations are needed, explain your process.
If the data doesn't contain information to answer the query, say so clearly.

Answer:"""
    
    def _get_sources(self, csv_ids: List[str]) -> List[Dict[str, str]]:
        """Get source information for the response."""
        sources = []
        
        for csv_id in csv_ids:
            if csv_id not in self.index_manager.indexes:
                continue
                
            metadata = self.index_manager.indexes[csv_id]["metadata"]
            sources.append({
                "csv": metadata["filename"],
                "columns": ", ".join(metadata["columns"][:5]) + ("..." if len(metadata["columns"]) > 5 else "")
            })
        
        return sources