File size: 21,177 Bytes
443d045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
from __future__ import annotations

import csv
import datetime
import io
import json
import os
import uuid
from abc import ABC, abstractmethod
from pathlib import Path
from typing import TYPE_CHECKING, Any, List

import gradio as gr
from gradio import encryptor, utils
from gradio.documentation import document, set_documentation_group

if TYPE_CHECKING:
    from gradio.components import IOComponent

set_documentation_group("flagging")


def _get_dataset_features_info(is_new, components):
    """
    Takes in a list of components and returns a dataset features info

    Parameters:
    is_new: boolean, whether the dataset is new or not
    components: list of components

    Returns:
    infos: a dictionary of the dataset features
    file_preview_types: dictionary mapping of gradio components to appropriate string.
    header: list of header strings

    """
    infos = {"flagged": {"features": {}}}
    # File previews for certain input and output types
    file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"}
    headers = []

    # Generate the headers and dataset_infos
    if is_new:

        for component in components:
            headers.append(component.label)
            infos["flagged"]["features"][component.label] = {
                "dtype": "string",
                "_type": "Value",
            }
            if isinstance(component, tuple(file_preview_types)):
                headers.append(component.label + " file")
                for _component, _type in file_preview_types.items():
                    if isinstance(component, _component):
                        infos["flagged"]["features"][
                            (component.label or "") + " file"
                        ] = {"_type": _type}
                        break

        headers.append("flag")
        infos["flagged"]["features"]["flag"] = {
            "dtype": "string",
            "_type": "Value",
        }

    return infos, file_preview_types, headers


class FlaggingCallback(ABC):
    """
    An abstract class for defining the methods that any FlaggingCallback should have.
    """

    @abstractmethod
    def setup(self, components: List[IOComponent], flagging_dir: str):
        """
        This method should be overridden and ensure that everything is set up correctly for flag().
        This method gets called once at the beginning of the Interface.launch() method.
        Parameters:
        components: Set of components that will provide flagged data.
        flagging_dir: A string, typically containing the path to the directory where the flagging file should be storied (provided as an argument to Interface.__init__()).
        """
        pass

    @abstractmethod
    def flag(
        self,
        flag_data: List[Any],
        flag_option: str | None = None,
        flag_index: int | None = None,
        username: str | None = None,
    ) -> int:
        """
        This method should be overridden by the FlaggingCallback subclass and may contain optional additional arguments.
        This gets called every time the <flag> button is pressed.
        Parameters:
        interface: The Interface object that is being used to launch the flagging interface.
        flag_data: The data to be flagged.
        flag_option (optional): In the case that flagging_options are provided, the flag option that is being used.
        flag_index (optional): The index of the sample that is being flagged.
        username (optional): The username of the user that is flagging the data, if logged in.
        Returns:
        (int) The total number of samples that have been flagged.
        """
        pass


@document()
class SimpleCSVLogger(FlaggingCallback):
    """
    A simplified implementation of the FlaggingCallback abstract class
    provided for illustrative purposes.  Each flagged sample (both the input and output data)
    is logged to a CSV file on the machine running the gradio app.
    Example:
        import gradio as gr
        def image_classifier(inp):
            return {'cat': 0.3, 'dog': 0.7}
        demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
                            flagging_callback=SimpleCSVLogger())
    """

    def __init__(self):
        pass

    def setup(self, components: List[IOComponent], flagging_dir: str | Path):
        self.components = components
        self.flagging_dir = flagging_dir
        os.makedirs(flagging_dir, exist_ok=True)

    def flag(
        self,
        flag_data: List[Any],
        flag_option: str | None = None,
        flag_index: int | None = None,
        username: str | None = None,
    ) -> int:
        flagging_dir = self.flagging_dir
        log_filepath = Path(flagging_dir) / "log.csv"

        csv_data = []
        for component, sample in zip(self.components, flag_data):
            save_dir = Path(flagging_dir) / utils.strip_invalid_filename_characters(
                component.label or ""
            )
            csv_data.append(
                component.deserialize(
                    sample,
                    save_dir,
                    None,
                )
            )

        with open(log_filepath, "a", newline="") as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(utils.sanitize_list_for_csv(csv_data))

        with open(log_filepath, "r") as csvfile:
            line_count = len([None for row in csv.reader(csvfile)]) - 1
        return line_count


@document()
class CSVLogger(FlaggingCallback):
    """
    The default implementation of the FlaggingCallback abstract class. Each flagged
    sample (both the input and output data) is logged to a CSV file with headers on the machine running the gradio app.
    Example:
        import gradio as gr
        def image_classifier(inp):
            return {'cat': 0.3, 'dog': 0.7}
        demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
                            flagging_callback=CSVLogger())
    Guides: using_flagging
    """

    def __init__(self):
        pass

    def setup(
        self,
        components: List[IOComponent],
        flagging_dir: str | Path,
        encryption_key: bytes | None = None,
    ):
        self.components = components
        self.flagging_dir = flagging_dir
        self.encryption_key = encryption_key
        os.makedirs(flagging_dir, exist_ok=True)

    def flag(
        self,
        flag_data: List[Any],
        flag_option: str | None = None,
        flag_index: int | None = None,
        username: str | None = None,
    ) -> int:
        flagging_dir = self.flagging_dir
        log_filepath = Path(flagging_dir) / "log.csv"
        is_new = not Path(log_filepath).exists()
        headers = [
            component.label or f"component {idx}"
            for idx, component in enumerate(self.components)
        ] + [
            "flag",
            "username",
            "timestamp",
        ]

        csv_data = []
        for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
            save_dir = Path(flagging_dir) / utils.strip_invalid_filename_characters(
                component.label or f"component {idx}"
            )
            if utils.is_update(sample):
                csv_data.append(str(sample))
            else:
                csv_data.append(
                    component.deserialize(
                        sample,
                        save_dir=save_dir,
                        encryption_key=self.encryption_key,
                    )
                    if sample is not None
                    else ""
                )
        csv_data.append(flag_option if flag_option is not None else "")
        csv_data.append(username if username is not None else "")
        csv_data.append(str(datetime.datetime.now()))

        def replace_flag_at_index(file_content: str, flag_index: int):
            file_content_ = io.StringIO(file_content)
            content = list(csv.reader(file_content_))
            header = content[0]
            flag_col_index = header.index("flag")
            content[flag_index][flag_col_index] = flag_option  # type: ignore
            output = io.StringIO()
            writer = csv.writer(output)
            writer.writerows(utils.sanitize_list_for_csv(content))
            return output.getvalue()

        if self.encryption_key:
            output = io.StringIO()
            if not is_new:
                with open(log_filepath, "rb", encoding="utf-8") as csvfile:
                    encrypted_csv = csvfile.read()
                    decrypted_csv = encryptor.decrypt(
                        self.encryption_key, encrypted_csv
                    )
                    file_content = decrypted_csv.decode()
                    if flag_index is not None:
                        file_content = replace_flag_at_index(file_content, flag_index)
                    output.write(file_content)
            writer = csv.writer(output)
            if flag_index is None:
                if is_new:
                    writer.writerow(utils.sanitize_list_for_csv(headers))
                writer.writerow(utils.sanitize_list_for_csv(csv_data))
            with open(log_filepath, "wb", encoding="utf-8") as csvfile:
                csvfile.write(
                    encryptor.encrypt(self.encryption_key, output.getvalue().encode())
                )
        else:
            if flag_index is None:
                with open(log_filepath, "a", newline="", encoding="utf-8") as csvfile:
                    writer = csv.writer(csvfile)
                    if is_new:
                        writer.writerow(utils.sanitize_list_for_csv(headers))
                    writer.writerow(utils.sanitize_list_for_csv(csv_data))
            else:
                with open(log_filepath, encoding="utf-8") as csvfile:
                    file_content = csvfile.read()
                    file_content = replace_flag_at_index(file_content, flag_index)
                with open(
                    log_filepath, "w", newline="", encoding="utf-8"
                ) as csvfile:  # newline parameter needed for Windows
                    csvfile.write(file_content)
        with open(log_filepath, "r", encoding="utf-8") as csvfile:
            line_count = len([None for row in csv.reader(csvfile)]) - 1
        return line_count


@document()
class HuggingFaceDatasetSaver(FlaggingCallback):
    """
    A callback that saves each flagged sample (both the input and output data)
    to a HuggingFace dataset.
    Example:
        import gradio as gr
        hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes")
        def image_classifier(inp):
            return {'cat': 0.3, 'dog': 0.7}
        demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
                            allow_flagging="manual", flagging_callback=hf_writer)
    Guides: using_flagging
    """

    def __init__(
        self,
        hf_token: str,
        dataset_name: str,
        organization: str | None = None,
        private: bool = False,
    ):
        """
        Parameters:
            hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset.
            dataset_name: The name of the dataset to save the data to, e.g. "image-classifier-1"
            organization: The organization to save the dataset under. The hf_token must provide write access to this organization. If not provided, saved under the name of the user corresponding to the hf_token.
            private: Whether the dataset should be private (defaults to False).
        """
        self.hf_token = hf_token
        self.dataset_name = dataset_name
        self.organization_name = organization
        self.dataset_private = private

    def setup(self, components: List[IOComponent], flagging_dir: str):
        """
        Params:
        flagging_dir (str): local directory where the dataset is cloned,
        updated, and pushed from.
        """
        try:
            import huggingface_hub
        except (ImportError, ModuleNotFoundError):
            raise ImportError(
                "Package `huggingface_hub` not found is needed "
                "for HuggingFaceDatasetSaver. Try 'pip install huggingface_hub'."
            )
        path_to_dataset_repo = huggingface_hub.create_repo(
            name=self.dataset_name,
            token=self.hf_token,
            private=self.dataset_private,
            repo_type="dataset",
            exist_ok=True,
        )
        self.path_to_dataset_repo = path_to_dataset_repo  # e.g. "https://huggingface.co/datasets/abidlabs/test-audio-10"
        self.components = components
        self.flagging_dir = flagging_dir
        self.dataset_dir = Path(flagging_dir) / self.dataset_name
        self.repo = huggingface_hub.Repository(
            local_dir=str(self.dataset_dir),
            clone_from=path_to_dataset_repo,
            use_auth_token=self.hf_token,
        )
        self.repo.git_pull(lfs=True)

        # Should filename be user-specified?
        self.log_file = Path(self.dataset_dir) / "data.csv"
        self.infos_file = Path(self.dataset_dir) / "dataset_infos.json"

    def flag(
        self,
        flag_data: List[Any],
        flag_option: str | None = None,
        flag_index: int | None = None,
        username: str | None = None,
    ) -> int:
        self.repo.git_pull(lfs=True)

        is_new = not Path(self.log_file).exists()

        with open(self.log_file, "a", newline="", encoding="utf-8") as csvfile:
            writer = csv.writer(csvfile)

            # File previews for certain input and output types
            infos, file_preview_types, headers = _get_dataset_features_info(
                is_new, self.components
            )

            # Generate the headers and dataset_infos
            if is_new:
                writer.writerow(utils.sanitize_list_for_csv(headers))

            # Generate the row corresponding to the flagged sample
            csv_data = []
            for component, sample in zip(self.components, flag_data):
                save_dir = Path(
                    self.dataset_dir
                ) / utils.strip_invalid_filename_characters(component.label or "")
                filepath = component.deserialize(sample, save_dir, None)
                csv_data.append(filepath)
                if isinstance(component, tuple(file_preview_types)):
                    csv_data.append(
                        "{}/resolve/main/{}".format(self.path_to_dataset_repo, filepath)
                    )
            csv_data.append(flag_option if flag_option is not None else "")
            writer.writerow(utils.sanitize_list_for_csv(csv_data))

        if is_new:
            json.dump(infos, open(self.infos_file, "w"))

        with open(self.log_file, "r", encoding="utf-8") as csvfile:
            line_count = len([None for row in csv.reader(csvfile)]) - 1

        self.repo.push_to_hub(commit_message="Flagged sample #{}".format(line_count))

        return line_count


class HuggingFaceDatasetJSONSaver(FlaggingCallback):
    """
    A FlaggingCallback that saves flagged data to a Hugging Face dataset in JSONL format.

    Each data sample is saved in a different JSONL file,
    allowing multiple users to use flagging simultaneously.
    Saving to a single CSV would cause errors as only one user can edit at the same time.

    """

    def __init__(
        self,
        hf_foken: str,
        dataset_name: str,
        organization: str | None = None,
        private: bool = False,
        verbose: bool = True,
    ):
        """
        Params:
        hf_token (str): The token to use to access the huggingface API.
        dataset_name (str): The name of the dataset to save the data to, e.g.
            "image-classifier-1"
        organization (str): The name of the organization to which to attach
            the datasets. If None, the dataset attaches to the user only.
        private (bool): If the dataset does not already exist, whether it
            should be created as a private dataset or public. Private datasets
            may require paid huggingface.co accounts
        verbose (bool): Whether to print out the status of the dataset
            creation.
        """
        self.hf_foken = hf_foken
        self.dataset_name = dataset_name
        self.organization_name = organization
        self.dataset_private = private
        self.verbose = verbose

    def setup(self, components: List[IOComponent], flagging_dir: str):
        """
        Params:
        components List[Component]: list of components for flagging
        flagging_dir (str): local directory where the dataset is cloned,
        updated, and pushed from.
        """
        try:
            import huggingface_hub
        except (ImportError, ModuleNotFoundError):
            raise ImportError(
                "Package `huggingface_hub` not found is needed "
                "for HuggingFaceDatasetJSONSaver. Try 'pip install huggingface_hub'."
            )
        path_to_dataset_repo = huggingface_hub.create_repo(
            name=self.dataset_name,
            token=self.hf_foken,
            private=self.dataset_private,
            repo_type="dataset",
            exist_ok=True,
        )
        self.path_to_dataset_repo = path_to_dataset_repo  # e.g. "https://huggingface.co/datasets/abidlabs/test-audio-10"
        self.components = components
        self.flagging_dir = flagging_dir
        self.dataset_dir = Path(flagging_dir) / self.dataset_name
        self.repo = huggingface_hub.Repository(
            local_dir=str(self.dataset_dir),
            clone_from=path_to_dataset_repo,
            use_auth_token=self.hf_foken,
        )
        self.repo.git_pull(lfs=True)

        self.infos_file = Path(self.dataset_dir) / "dataset_infos.json"

    def flag(
        self,
        flag_data: List[Any],
        flag_option: str | None = None,
        flag_index: int | None = None,
        username: str | None = None,
    ) -> str:
        self.repo.git_pull(lfs=True)

        # Generate unique folder for the flagged sample
        unique_name = self.get_unique_name()  # unique name for folder
        folder_name = (
            Path(self.dataset_dir) / unique_name
        )  # unique folder for specific example
        os.makedirs(folder_name)

        # Now uses the existence of `dataset_infos.json` to determine if new
        is_new = not Path(self.infos_file).exists()

        # File previews for certain input and output types
        infos, file_preview_types, _ = _get_dataset_features_info(
            is_new, self.components
        )

        # Generate the row and header corresponding to the flagged sample
        csv_data = []
        headers = []

        for component, sample in zip(self.components, flag_data):
            headers.append(component.label)

            try:
                save_dir = Path(folder_name) / utils.strip_invalid_filename_characters(
                    component.label or ""
                )
                filepath = component.deserialize(sample, save_dir, None)
            except Exception:
                # Could not parse 'sample' (mostly) because it was None and `component.save_flagged`
                # does not handle None cases.
                # for example: Label (line 3109 of components.py raises an error if data is None)
                filepath = None

            if isinstance(component, tuple(file_preview_types)):
                headers.append(component.label or "" + " file")

                csv_data.append(
                    "{}/resolve/main/{}/{}".format(
                        self.path_to_dataset_repo, unique_name, filepath
                    )
                    if filepath is not None
                    else None
                )

            csv_data.append(filepath)
        headers.append("flag")
        csv_data.append(flag_option if flag_option is not None else "")

        # Creates metadata dict from row data and dumps it
        metadata_dict = {
            header: _csv_data for header, _csv_data in zip(headers, csv_data)
        }
        self.dump_json(metadata_dict, Path(folder_name) / "metadata.jsonl")

        if is_new:
            json.dump(infos, open(self.infos_file, "w"))

        self.repo.push_to_hub(commit_message="Flagged sample {}".format(unique_name))
        return unique_name

    def get_unique_name(self):
        id = uuid.uuid4()
        return str(id)

    def dump_json(self, thing: dict, file_path: str | Path) -> None:
        with open(file_path, "w+", encoding="utf8") as f:
            json.dump(thing, f)


class FlagMethod:
    """
    Helper class that contains the flagging button option and callback
    """

    def __init__(self, flagging_callback: FlaggingCallback, flag_option=None):
        self.flagging_callback = flagging_callback
        self.flag_option = flag_option
        self.__name__ = "Flag"

    def __call__(self, *flag_data):
        self.flagging_callback.flag(list(flag_data), flag_option=self.flag_option)