File size: 31,433 Bytes
443d045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
"""
Defines helper methods useful for loading and caching Interface examples.
"""
from __future__ import annotations

import ast
import csv
import inspect
import os
import subprocess
import tempfile
import threading
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, List, Optional, Tuple

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import PIL

from gradio import processing_utils, routes, utils
from gradio.context import Context
from gradio.documentation import document, set_documentation_group
from gradio.flagging import CSVLogger

if TYPE_CHECKING:  # Only import for type checking (to avoid circular imports).
    from gradio.components import IOComponent

CACHED_FOLDER = "gradio_cached_examples"
LOG_FILE = "log.csv"

set_documentation_group("helpers")


def create_examples(
    examples: List[Any] | List[List[Any]] | str,
    inputs: IOComponent | List[IOComponent],
    outputs: IOComponent | List[IOComponent] | None = None,
    fn: Callable | None = None,
    cache_examples: bool = False,
    examples_per_page: int = 10,
    _api_mode: bool = False,
    label: str | None = None,
    elem_id: str | None = None,
    run_on_click: bool = False,
    preprocess: bool = True,
    postprocess: bool = True,
    batch: bool = False,
):
    """Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component."""
    examples_obj = Examples(
        examples=examples,
        inputs=inputs,
        outputs=outputs,
        fn=fn,
        cache_examples=cache_examples,
        examples_per_page=examples_per_page,
        _api_mode=_api_mode,
        label=label,
        elem_id=elem_id,
        run_on_click=run_on_click,
        preprocess=preprocess,
        postprocess=postprocess,
        batch=batch,
        _initiated_directly=False,
    )
    utils.synchronize_async(examples_obj.create)
    return examples_obj


@document()
class Examples:
    """
    This class is a wrapper over the Dataset component and can be used to create Examples
    for Blocks / Interfaces. Populates the Dataset component with examples and
    assigns event listener so that clicking on an example populates the input/output
    components. Optionally handles example caching for fast inference.

    Demos: blocks_inputs, fake_gan
    Guides: more_on_examples_and_flagging, using_hugging_face_integrations, image_classification_in_pytorch, image_classification_in_tensorflow, image_classification_with_vision_transformers, create_your_own_friends_with_a_gan
    """

    def __init__(
        self,
        examples: List[Any] | List[List[Any]] | str,
        inputs: IOComponent | List[IOComponent],
        outputs: Optional[IOComponent | List[IOComponent]] = None,
        fn: Optional[Callable] = None,
        cache_examples: bool = False,
        examples_per_page: int = 10,
        _api_mode: bool = False,
        label: str = "Examples",
        elem_id: Optional[str] = None,
        run_on_click: bool = False,
        preprocess: bool = True,
        postprocess: bool = True,
        batch: bool = False,
        _initiated_directly: bool = True,
    ):
        """
        Parameters:
            examples: example inputs that can be clicked to populate specific components. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component. A string path to a directory of examples can also be provided but it should be within the directory with the python file running the gradio app. If there are multiple input components and a directory is provided, a log.csv file must be present in the directory to link corresponding inputs.
            inputs: the component or list of components corresponding to the examples
            outputs: optionally, provide the component or list of components corresponding to the output of the examples. Required if `cache` is True.
            fn: optionally, provide the function to run to generate the outputs corresponding to the examples. Required if `cache` is True.
            cache_examples: if True, caches examples for fast runtime. If True, then `fn` and `outputs` need to be provided
            examples_per_page: how many examples to show per page.
            label: the label to use for the examples component (by default, "Examples")
            elem_id: an optional string that is assigned as the id of this component in the HTML DOM.
            run_on_click: if cache_examples is False, clicking on an example does not run the function when an example is clicked. Set this to True to run the function when an example is clicked. Has no effect if cache_examples is True.
            preprocess: if True, preprocesses the example input before running the prediction function and caching the output. Only applies if cache_examples is True.
            postprocess: if True, postprocesses the example output after running the prediction function and before caching. Only applies if cache_examples is True.
            batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. Used only if cache_examples is True.
        """
        if _initiated_directly:
            warnings.warn(
                "Please use gr.Examples(...) instead of gr.examples.Examples(...) to create the Examples.",
            )

        if cache_examples and (fn is None or outputs is None):
            raise ValueError("If caching examples, `fn` and `outputs` must be provided")

        if not isinstance(inputs, list):
            inputs = [inputs]
        if not isinstance(outputs, list):
            outputs = [outputs]

        working_directory = Path().absolute()

        if examples is None:
            raise ValueError("The parameter `examples` cannot be None")
        elif isinstance(examples, list) and (
            len(examples) == 0 or isinstance(examples[0], list)
        ):
            pass
        elif (
            isinstance(examples, list) and len(inputs) == 1
        ):  # If there is only one input component, examples can be provided as a regular list instead of a list of lists
            examples = [[e] for e in examples]
        elif isinstance(examples, str):
            if not os.path.exists(examples):
                raise FileNotFoundError(
                    "Could not find examples directory: " + examples
                )
            working_directory = examples
            if not os.path.exists(os.path.join(examples, LOG_FILE)):
                if len(inputs) == 1:
                    examples = [[e] for e in os.listdir(examples)]
                else:
                    raise FileNotFoundError(
                        "Could not find log file (required for multiple inputs): "
                        + LOG_FILE
                    )
            else:
                with open(os.path.join(examples, LOG_FILE)) as logs:
                    examples = list(csv.reader(logs))
                    examples = [
                        examples[i][: len(inputs)] for i in range(1, len(examples))
                    ]  # remove header and unnecessary columns

        else:
            raise ValueError(
                "The parameter `examples` must either be a string directory or a list"
                "(if there is only 1 input component) or (more generally), a nested "
                "list, where each sublist represents a set of inputs."
            )

        input_has_examples = [False] * len(inputs)
        for example in examples:
            for idx, example_for_input in enumerate(example):
                if not (example_for_input is None):
                    try:
                        input_has_examples[idx] = True
                    except IndexError:
                        pass  # If there are more example components than inputs, ignore. This can sometimes be intentional (e.g. loading from a log file where outputs and timestamps are also logged)

        inputs_with_examples = [
            inp for (inp, keep) in zip(inputs, input_has_examples) if keep
        ]
        non_none_examples = [
            [ex for (ex, keep) in zip(example, input_has_examples) if keep]
            for example in examples
        ]

        self.examples = examples
        self.non_none_examples = non_none_examples
        self.inputs = inputs
        self.inputs_with_examples = inputs_with_examples
        self.outputs = outputs
        self.fn = fn
        self.cache_examples = cache_examples
        self._api_mode = _api_mode
        self.preprocess = preprocess
        self.postprocess = postprocess
        self.batch = batch

        with utils.set_directory(working_directory):
            self.processed_examples = [
                [
                    component.postprocess(sample)
                    for component, sample in zip(inputs, example)
                ]
                for example in examples
            ]
        self.non_none_processed_examples = [
            [ex for (ex, keep) in zip(example, input_has_examples) if keep]
            for example in self.processed_examples
        ]
        if cache_examples:
            for example in self.examples:
                if len([ex for ex in example if ex is not None]) != len(self.inputs):
                    warnings.warn(
                        "Examples are being cached but not all input components have "
                        "example values. This may result in an exception being thrown by "
                        "your function. If you do get an error while caching examples, make "
                        "sure all of your inputs have example values for all of your examples "
                        "or you provide default values for those particular parameters in your function."
                    )
                    break

        from gradio.components import Dataset

        with utils.set_directory(working_directory):
            self.dataset = Dataset(
                components=inputs_with_examples,
                samples=non_none_examples,
                type="index",
                label=label,
                samples_per_page=examples_per_page,
                elem_id=elem_id,
            )

        self.cached_folder = os.path.join(CACHED_FOLDER, str(self.dataset._id))
        self.cached_file = os.path.join(self.cached_folder, "log.csv")
        self.cache_examples = cache_examples
        self.run_on_click = run_on_click

    async def create(self) -> None:
        """Caches the examples if self.cache_examples is True and creates the Dataset
        component to hold the examples"""

        async def load_example(example_id):
            if self.cache_examples:
                processed_example = self.non_none_processed_examples[
                    example_id
                ] + await self.load_from_cache(example_id)
            else:
                processed_example = self.non_none_processed_examples[example_id]
            return utils.resolve_singleton(processed_example)

        if Context.root_block:
            self.dataset.click(
                load_example,
                inputs=[self.dataset],
                outputs=self.inputs_with_examples
                + (self.outputs if self.cache_examples else []),
                postprocess=False,
                queue=False,
            )
            if self.run_on_click and not self.cache_examples:
                self.dataset.click(
                    self.fn,
                    inputs=self.inputs,
                    outputs=self.outputs,
                )

        if self.cache_examples:
            await self.cache()

    async def cache(self) -> None:
        """
        Caches all of the examples so that their predictions can be shown immediately.
        """
        if os.path.exists(self.cached_file):
            print(
                f"Using cache from '{os.path.abspath(self.cached_folder)}' directory. If method or examples have changed since last caching, delete this folder to clear cache."
            )
        else:
            if Context.root_block is None:
                raise ValueError("Cannot cache examples if not in a Blocks context")

            print(f"Caching examples at: '{os.path.abspath(self.cached_file)}'")
            cache_logger = CSVLogger()

            # create a fake dependency to process the examples and get the predictions
            dependency = Context.root_block.set_event_trigger(
                event_name="fake_event",
                fn=self.fn,
                inputs=self.inputs_with_examples,
                outputs=self.outputs,
                preprocess=self.preprocess and not self._api_mode,
                postprocess=self.postprocess and not self._api_mode,
                batch=self.batch,
            )

            fn_index = Context.root_block.dependencies.index(dependency)
            cache_logger.setup(self.outputs, self.cached_folder)
            for example_id, _ in enumerate(self.examples):
                processed_input = self.processed_examples[example_id]
                if self.batch:
                    processed_input = [[value] for value in processed_input]
                prediction = await Context.root_block.process_api(
                    fn_index=fn_index, inputs=processed_input, request=None, state={}
                )
                output = prediction["data"]
                if self.batch:
                    output = [value[0] for value in output]
                cache_logger.flag(output)
            # Remove the "fake_event" to prevent bugs in loading interfaces from spaces
            Context.root_block.dependencies.remove(dependency)
            Context.root_block.fns.pop(fn_index)

    async def load_from_cache(self, example_id: int) -> List[Any]:
        """Loads a particular cached example for the interface.
        Parameters:
            example_id: The id of the example to process (zero-indexed).
        """
        with open(self.cached_file) as cache:
            examples = list(csv.reader(cache))
        example = examples[example_id + 1]  # +1 to adjust for header
        output = []
        for component, value in zip(self.outputs, example):
            try:
                value_as_dict = ast.literal_eval(value)
                assert utils.is_update(value_as_dict)
                output.append(value_as_dict)
            except (ValueError, TypeError, SyntaxError, AssertionError):
                output.append(component.serialize(value, self.cached_folder))
        return output


class TrackedIterable:
    def __init__(
        self,
        iterable: Iterable,
        index: int | None,
        length: int | None,
        desc: str | None,
        unit: str | None,
        _tqdm=None,
        progress: float = None,
    ) -> None:
        self.iterable = iterable
        self.index = index
        self.length = length
        self.desc = desc
        self.unit = unit
        self._tqdm = _tqdm
        self.progress = progress


@document("__call__", "tqdm")
class Progress(Iterable):
    """
    The Progress class provides a custom progress tracker that is used in a function signature.
    To attach a Progress tracker to a function, simply add a parameter right after the input parameters that has a default value set to a `gradio.Progress()` instance.
    The Progress tracker can then be updated in the function by calling the Progress object or using the `tqdm` method on an Iterable.
    The Progress tracker is currently only available with `queue()`.
    Example:
        import gradio as gr
        import time
        def my_function(x, progress=gr.Progress()):
            progress(0, desc="Starting...")
            time.sleep(1)
            for i in progress.tqdm(range(100)):
                time.sleep(0.1)
            return x
        gr.Interface(my_function, gr.Textbox(), gr.Textbox()).queue().launch()
    Demos: progress
    """

    def __init__(
        self,
        track_tqdm: bool = False,
        _active: bool = False,
        _callback: Callable = None,
        _event_id: str = None,
    ):
        """
        Parameters:
            track_tqdm: If True, the Progress object will track any tqdm.tqdm iterations with the tqdm library in the function.
        """
        self.track_tqdm = track_tqdm
        self._active = _active
        self._callback = _callback
        self._event_id = _event_id
        self.iterables: List[TrackedIterable] = []

    def __len__(self):
        return self.iterables[-1].length

    def __iter__(self):
        return self

    def __next__(self):
        """
        Updates progress tracker with next item in iterable.
        """
        if self._active:
            current_iterable = self.iterables[-1]
            while (
                not hasattr(current_iterable.iterable, "__next__")
                and len(self.iterables) > 0
            ):
                current_iterable = self.iterables.pop()
            self._callback(
                event_id=self._event_id,
                iterables=self.iterables,
            )
            current_iterable.index += 1
            try:
                return next(current_iterable.iterable)
            except StopIteration:
                self.iterables.pop()
                raise StopIteration
        else:
            return self

    def __call__(
        self,
        progress: float | Tuple[int, int | None] | None,
        desc: str | None = None,
        total: float | None = None,
        unit: str = "steps",
        _tqdm=None,
    ):
        """
        Updates progress tracker with progress and message text.
        Parameters:
            progress: If float, should be between 0 and 1 representing completion. If Tuple, first number represents steps completed, and second value represents total steps or None if unknown. If None, hides progress bar.
            desc: description to display.
            total: estimated total number of steps.
            unit: unit of iterations.
        """
        if self._active:
            if isinstance(progress, tuple):
                index, total = progress
                progress = None
            else:
                index = None
            self._callback(
                event_id=self._event_id,
                iterables=self.iterables
                + [TrackedIterable(None, index, total, desc, unit, _tqdm, progress)],
            )
        else:
            return progress

    def tqdm(
        self,
        iterable: Iterable | None,
        desc: str = None,
        total: float = None,
        unit: str = "steps",
        _tqdm=None,
        *args,
        **kwargs,
    ):
        """
        Attaches progress tracker to iterable, like tqdm.
        Parameters:
            iterable: iterable to attach progress tracker to.
            desc: description to display.
            total: estimated total number of steps.
            unit: unit of iterations.
        """
        if iterable is None:
            new_iterable = TrackedIterable(None, 0, total, desc, unit, _tqdm)
            self.iterables.append(new_iterable)
            self._callback(event_id=self._event_id, iterables=self.iterables)
            return
        length = len(iterable) if hasattr(iterable, "__len__") else None
        self.iterables.append(
            TrackedIterable(iter(iterable), 0, length, desc, unit, _tqdm)
        )
        return self

    def update(self, n=1):
        """
        Increases latest iterable with specified number of steps.
        Parameters:
            n: number of steps completed.
        """
        if self._active and len(self.iterables) > 0:
            current_iterable = self.iterables[-1]
            current_iterable.index += n
            self._callback(
                event_id=self._event_id,
                iterables=self.iterables,
            )
        else:
            return

    def close(self, _tqdm):
        """
        Removes iterable with given _tqdm.
        """
        if self._active:
            for i in range(len(self.iterables)):
                if id(self.iterables[i]._tqdm) == id(_tqdm):
                    self.iterables.pop(i)
                    break
            self._callback(
                event_id=self._event_id,
                iterables=self.iterables,
            )
        else:
            return


def create_tracker(root_blocks, event_id, fn, track_tqdm):

    progress = Progress(
        _active=True, _callback=root_blocks._queue.set_progress, _event_id=event_id
    )
    if not track_tqdm:
        return progress, fn

    try:
        _tqdm = __import__("tqdm")
    except ModuleNotFoundError:
        return progress, fn
    if not hasattr(root_blocks, "_progress_tracker_per_thread"):
        root_blocks._progress_tracker_per_thread = {}

    def init_tqdm(self, iterable=None, desc=None, *args, **kwargs):
        self._progress = root_blocks._progress_tracker_per_thread.get(
            threading.get_ident()
        )
        if self._progress is not None:
            self._progress.event_id = event_id
            self._progress.tqdm(iterable, desc, _tqdm=self, *args, **kwargs)
            kwargs["file"] = open(os.devnull, "w")
        self.__init__orig__(iterable, desc, *args, **kwargs)

    def iter_tqdm(self):
        if self._progress is not None:
            return self._progress
        else:
            return self.__iter__orig__()

    def update_tqdm(self, n=1):
        if self._progress is not None:
            self._progress.update(n)
        return self.__update__orig__(n)

    def close_tqdm(self):
        if self._progress is not None:
            self._progress.close(self)
        return self.__close__orig__()

    def exit_tqdm(self, exc_type, exc_value, traceback):
        if self._progress is not None:
            self._progress.close(self)
        return self.__exit__orig__(exc_type, exc_value, traceback)

    if not hasattr(_tqdm.tqdm, "__init__orig__"):
        _tqdm.tqdm.__init__orig__ = _tqdm.tqdm.__init__
    _tqdm.tqdm.__init__ = init_tqdm
    if not hasattr(_tqdm.tqdm, "__update__orig__"):
        _tqdm.tqdm.__update__orig__ = _tqdm.tqdm.update
    _tqdm.tqdm.update = update_tqdm
    if not hasattr(_tqdm.tqdm, "__close__orig__"):
        _tqdm.tqdm.__close__orig__ = _tqdm.tqdm.close
    _tqdm.tqdm.close = close_tqdm
    if not hasattr(_tqdm.tqdm, "__exit__orig__"):
        _tqdm.tqdm.__exit__orig__ = _tqdm.tqdm.__exit__
    _tqdm.tqdm.__exit__ = exit_tqdm
    if not hasattr(_tqdm.tqdm, "__iter__orig__"):
        _tqdm.tqdm.__iter__orig__ = _tqdm.tqdm.__iter__
    _tqdm.tqdm.__iter__ = iter_tqdm
    if hasattr(_tqdm, "auto") and hasattr(_tqdm.auto, "tqdm"):
        _tqdm.auto.tqdm = _tqdm.tqdm

    def tracked_fn(*args):
        thread_id = threading.get_ident()
        root_blocks._progress_tracker_per_thread[thread_id] = progress
        response = fn(*args)
        del root_blocks._progress_tracker_per_thread[thread_id]
        return response

    return progress, tracked_fn


def special_args(
    fn: Callable,
    inputs: List[Any] | None = None,
    request: routes.Request | None = None,
):
    """
    Checks if function has special arguments Request (via annotation) or Progress (via default value).
    If inputs is provided, these values will be loaded into the inputs array.
    Parameters:
        block_fn: function to check.
        inputs: array to load special arguments into.
        request: request to load into inputs.
    Returns:
        updated inputs, request index, progress index
    """
    signature = inspect.signature(fn)
    positional_args = []
    for i, param in enumerate(signature.parameters.values()):
        if param.kind not in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD):
            break
        positional_args.append(param)
    progress_index = None
    for i, param in enumerate(positional_args):
        if isinstance(param.default, Progress):
            progress_index = i
            if inputs is not None:
                inputs.insert(i, param.default)
        elif param.annotation == routes.Request:
            if inputs is not None:
                inputs.insert(i, request)
    if inputs is not None:
        while len(inputs) < len(positional_args):
            i = len(inputs)
            param = positional_args[i]
            if param.default == param.empty:
                warnings.warn("Unexpected argument. Filling with None.")
                inputs.append(None)
            else:
                inputs.append(param.default)
    return inputs or [], progress_index


@document()
def update(**kwargs) -> dict:
    """
    Updates component properties. When a function passed into a Gradio Interface or a Blocks events returns a typical value, it updates the value of the output component. But it is also possible to update the properties of an output component (such as the number of lines of a `Textbox` or the visibility of an `Image`) by returning the component's `update()` function, which takes as parameters any of the constructor parameters for that component.
    This is a shorthand for using the update method on a component.
    For example, rather than using gr.Number.update(...) you can just use gr.update(...).
    Note that your editor's autocompletion will suggest proper parameters
    if you use the update method on the component.
    Demos: blocks_essay, blocks_update, blocks_essay_update

    Parameters:
        kwargs: Key-word arguments used to update the component's properties.
    Example:
        # Blocks Example
        import gradio as gr
        with gr.Blocks() as demo:
            radio = gr.Radio([1, 2, 4], label="Set the value of the number")
            number = gr.Number(value=2, interactive=True)
            radio.change(fn=lambda value: gr.update(value=value), inputs=radio, outputs=number)
        demo.launch()

        # Interface example
        import gradio as gr
        def change_textbox(choice):
          if choice == "short":
              return gr.Textbox.update(lines=2, visible=True)
          elif choice == "long":
              return gr.Textbox.update(lines=8, visible=True)
          else:
              return gr.Textbox.update(visible=False)
        gr.Interface(
          change_textbox,
          gr.Radio(
              ["short", "long", "none"], label="What kind of essay would you like to write?"
          ),
          gr.Textbox(lines=2),
          live=True,
        ).launch()
    """
    kwargs["__type__"] = "generic_update"
    return kwargs


def skip() -> dict:
    return update()


@document()
def make_waveform(
    audio: str | Tuple[int, np.ndarray],
    *,
    bg_color: str = "#f3f4f6",
    bg_image: str = None,
    fg_alpha: float = 0.75,
    bars_color: str | Tuple[str, str] = ("#fbbf24", "#ea580c"),
    bar_count: int = 50,
    bar_width: float = 0.6,
):
    """
    Generates a waveform video from an audio file. Useful for creating an easy to share audio visualization. The output should be passed into a `gr.Video` component.
    Parameters:
        audio: Audio file path or tuple of (sample_rate, audio_data)
        bg_color: Background color of waveform (ignored if bg_image is provided)
        bg_image: Background image of waveform
        fg_alpha: Opacity of foreground waveform
        bars_color: Color of waveform bars. Can be a single color or a tuple of (start_color, end_color) of gradient
        bar_count: Number of bars in waveform
        bar_width: Width of bars in waveform. 1 represents full width, 0.5 represents half width, etc.
    Returns:
        A filepath to the output video.
    """
    if isinstance(audio, str):
        audio_file = audio
        audio = processing_utils.audio_from_file(audio)
    else:
        tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
        processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name)
        audio_file = tmp_wav.name
    duration = round(len(audio[1]) / audio[0], 4)

    # Helper methods to create waveform
    def hex_to_RGB(hex_str):
        return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)]

    def get_color_gradient(c1, c2, n):
        assert n > 1
        c1_rgb = np.array(hex_to_RGB(c1)) / 255
        c2_rgb = np.array(hex_to_RGB(c2)) / 255
        mix_pcts = [x / (n - 1) for x in range(n)]
        rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts]
        return [
            "#" + "".join([format(int(round(val * 255)), "02x") for val in item])
            for item in rgb_colors
        ]

    # Reshape audio to have a fixed number of bars
    samples = audio[1]
    if len(samples.shape) > 1:
        samples = np.mean(samples, 1)
    bins_to_pad = bar_count - (len(samples) % bar_count)
    samples = np.pad(samples, [(0, bins_to_pad)])
    samples = np.reshape(samples, (bar_count, -1))
    samples = np.abs(samples)
    samples = np.max(samples, 1)

    matplotlib.use("Agg")
    plt.clf()
    # Plot waveform
    color = (
        bars_color
        if isinstance(bars_color, str)
        else get_color_gradient(bars_color[0], bars_color[1], bar_count)
    )
    plt.bar(
        np.arange(0, bar_count),
        samples * 2,
        bottom=(-1 * samples),
        width=bar_width,
        color=color,
    )
    plt.axis("off")
    plt.margins(x=0)
    tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    savefig_kwargs = {"bbox_inches": "tight"}
    if bg_image is not None:
        savefig_kwargs["transparent"] = True
    else:
        savefig_kwargs["facecolor"] = bg_color
    plt.savefig(tmp_img.name, **savefig_kwargs)
    waveform_img = PIL.Image.open(tmp_img.name)
    waveform_img = waveform_img.resize((1000, 200))

    # Composite waveform with background image
    if bg_image is not None:
        waveform_array = np.array(waveform_img)
        waveform_array[:, :, 3] = waveform_array[:, :, 3] * fg_alpha
        waveform_img = PIL.Image.fromarray(waveform_array)

        bg_img = PIL.Image.open(bg_image)
        waveform_width, waveform_height = waveform_img.size
        bg_width, bg_height = bg_img.size
        if waveform_width != bg_width:
            bg_img = bg_img.resize(
                (waveform_width, 2 * int(bg_height * waveform_width / bg_width / 2))
            )
            bg_width, bg_height = bg_img.size
        composite_height = max(bg_height, waveform_height)
        composite = PIL.Image.new("RGBA", (waveform_width, composite_height), "#FFFFFF")
        composite.paste(bg_img, (0, composite_height - bg_height))
        composite.paste(
            waveform_img, (0, composite_height - waveform_height), waveform_img
        )
        composite.save(tmp_img.name)
        img_width, img_height = composite.size
    else:
        img_width, img_height = waveform_img.size
        waveform_img.save(tmp_img.name)

    # Convert waveform to video with ffmpeg
    output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)

    ffmpeg_cmd = f"""ffmpeg -loop 1 -i {tmp_img.name} -i {audio_file} -vf "color=c=#FFFFFF77:s={img_width}x{img_height}[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1" -t {duration} -y {output_mp4.name}"""

    subprocess.call(ffmpeg_cmd, shell=True)
    return output_mp4.name