File size: 16,495 Bytes
443d045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
from __future__ import annotations
import asyncio
import copy
import sys
import time
from collections import deque
from typing import Any, Deque, Dict, List, Tuple
import fastapi
from gradio.data_classes import Estimation, PredictBody, Progress, ProgressUnit
from gradio.helpers import TrackedIterable
from gradio.utils import AsyncRequest, run_coro_in_background, set_task_name
class Event:
def __init__(
self,
websocket: fastapi.WebSocket,
session_hash: str,
fn_index: int,
):
self.websocket = websocket
self.session_hash: str = session_hash
self.fn_index: int = fn_index
self._id = f"{self.session_hash}_{self.fn_index}"
self.data: PredictBody | None = None
self.lost_connection_time: float | None = None
self.token: str | None = None
self.progress: Progress | None = None
self.progress_pending: bool = False
async def disconnect(self, code: int = 1000):
await self.websocket.close(code=code)
class Queue:
def __init__(
self,
live_updates: bool,
concurrency_count: int,
update_intervals: float,
max_size: int | None,
blocks_dependencies: List,
):
self.event_queue: Deque[Event] = deque()
self.events_pending_reconnection = []
self.stopped = False
self.max_thread_count = concurrency_count
self.update_intervals = update_intervals
self.active_jobs: List[None | List[Event]] = [None] * concurrency_count
self.delete_lock = asyncio.Lock()
self.server_path = None
self.duration_history_total = 0
self.duration_history_count = 0
self.avg_process_time = 0
self.avg_concurrent_process_time = None
self.queue_duration = 1
self.live_updates = live_updates
self.sleep_when_free = 0.05
self.progress_update_sleep_when_free = 0.1
self.max_size = max_size
self.blocks_dependencies = blocks_dependencies
self.access_token = ""
async def start(self, progress_tracking=False):
run_coro_in_background(self.start_processing)
if progress_tracking:
run_coro_in_background(self.start_progress_tracking)
if not self.live_updates:
run_coro_in_background(self.notify_clients)
def close(self):
self.stopped = True
def resume(self):
self.stopped = False
def set_url(self, url: str):
self.server_path = url
def set_access_token(self, token: str):
self.access_token = token
def get_active_worker_count(self) -> int:
count = 0
for worker in self.active_jobs:
if worker is not None:
count += 1
return count
def get_events_in_batch(self) -> Tuple[List[Event] | None, bool]:
if not (self.event_queue):
return None, False
first_event = self.event_queue.popleft()
events = [first_event]
event_fn_index = first_event.fn_index
batch = self.blocks_dependencies[event_fn_index]["batch"]
if batch:
batch_size = self.blocks_dependencies[event_fn_index]["max_batch_size"]
rest_of_batch = [
event for event in self.event_queue if event.fn_index == event_fn_index
][: batch_size - 1]
events.extend(rest_of_batch)
[self.event_queue.remove(event) for event in rest_of_batch]
return events, batch
async def start_processing(self) -> None:
while not self.stopped:
if not self.event_queue:
await asyncio.sleep(self.sleep_when_free)
continue
if not (None in self.active_jobs):
await asyncio.sleep(self.sleep_when_free)
continue
# Using mutex to avoid editing a list in use
async with self.delete_lock:
events, batch = self.get_events_in_batch()
if events:
self.active_jobs[self.active_jobs.index(None)] = events
task = run_coro_in_background(self.process_events, events, batch)
run_coro_in_background(self.broadcast_live_estimations)
set_task_name(task, events[0].session_hash, events[0].fn_index, batch)
async def start_progress_tracking(self) -> None:
while not self.stopped:
if not any(self.active_jobs):
await asyncio.sleep(self.progress_update_sleep_when_free)
continue
for job in self.active_jobs:
if job is None:
continue
for event in job:
if event.progress_pending and event.progress:
event.progress_pending = False
client_awake = await self.send_message(
event, event.progress.dict()
)
if not client_awake:
await self.clean_event(event)
await asyncio.sleep(self.progress_update_sleep_when_free)
def set_progress(
self,
event_id: str,
iterables: List[TrackedIterable] | None,
):
if iterables is None:
return
for job in self.active_jobs:
if job is None:
continue
for evt in job:
if evt._id == event_id:
progress_data: List[ProgressUnit] = []
for iterable in iterables:
progress_unit = ProgressUnit(
index=iterable.index,
length=iterable.length,
unit=iterable.unit,
progress=iterable.progress,
desc=iterable.desc,
)
progress_data.append(progress_unit)
evt.progress = Progress(progress_data=progress_data)
evt.progress_pending = True
def push(self, event: Event) -> int | None:
"""
Add event to queue, or return None if Queue is full
Parameters:
event: Event to add to Queue
Returns:
rank of submitted Event
"""
queue_len = len(self.event_queue)
if self.max_size is not None and queue_len >= self.max_size:
return None
self.event_queue.append(event)
return queue_len
async def clean_event(self, event: Event) -> None:
if event in self.event_queue:
async with self.delete_lock:
self.event_queue.remove(event)
async def broadcast_live_estimations(self) -> None:
"""
Runs 2 functions sequentially instead of concurrently. Otherwise dced clients are tried to get deleted twice.
"""
if self.live_updates:
await self.broadcast_estimations()
async def gather_event_data(self, event: Event) -> bool:
"""
Gather data for the event
Parameters:
event:
"""
if not event.data:
client_awake = await self.send_message(event, {"msg": "send_data"})
if not client_awake:
return False
event.data = await self.get_message(event)
return True
async def notify_clients(self) -> None:
"""
Notify clients about events statuses in the queue periodically.
"""
while not self.stopped:
await asyncio.sleep(self.update_intervals)
if self.event_queue:
await self.broadcast_estimations()
async def broadcast_estimations(self) -> None:
estimation = self.get_estimation()
# Send all messages concurrently
await asyncio.gather(
*[
self.send_estimation(event, estimation, rank)
for rank, event in enumerate(self.event_queue)
]
)
async def send_estimation(
self, event: Event, estimation: Estimation, rank: int
) -> Estimation:
"""
Send estimation about ETA to the client.
Parameters:
event:
estimation:
rank:
"""
estimation.rank = rank
if self.avg_concurrent_process_time is not None:
estimation.rank_eta = (
estimation.rank * self.avg_concurrent_process_time
+ self.avg_process_time
)
if None not in self.active_jobs:
# Add estimated amount of time for a thread to get empty
estimation.rank_eta += self.avg_concurrent_process_time
client_awake = await self.send_message(event, estimation.dict())
if not client_awake:
await self.clean_event(event)
return estimation
def update_estimation(self, duration: float) -> None:
"""
Update estimation by last x element's average duration.
Parameters:
duration:
"""
self.duration_history_total += duration
self.duration_history_count += 1
self.avg_process_time = (
self.duration_history_total / self.duration_history_count
)
self.avg_concurrent_process_time = self.avg_process_time / min(
self.max_thread_count, self.duration_history_count
)
self.queue_duration = self.avg_concurrent_process_time * len(self.event_queue)
def get_estimation(self) -> Estimation:
return Estimation(
queue_size=len(self.event_queue),
avg_event_process_time=self.avg_process_time,
avg_event_concurrent_process_time=self.avg_concurrent_process_time,
queue_eta=self.queue_duration,
)
def get_request_params(self, websocket: fastapi.WebSocket) -> Dict[str, Any]:
return {
"url": str(websocket.url),
"headers": dict(websocket.headers),
"query_params": dict(websocket.query_params),
"path_params": dict(websocket.path_params),
"client": dict(host=websocket.client.host, port=websocket.client.port), # type: ignore
}
async def call_prediction(self, events: List[Event], batch: bool):
data = events[0].data
assert data is not None, "No event data"
token = events[0].token
data.event_id = events[0]._id if not batch else None
try:
data.request = self.get_request_params(events[0].websocket)
except ValueError:
pass
if batch:
data.data = list(zip(*[event.data.data for event in events if event.data]))
data.request = [
self.get_request_params(event.websocket)
for event in events
if event.data
]
data.batched = True
response = await AsyncRequest(
method=AsyncRequest.Method.POST,
url=f"{self.server_path}api/predict",
json=dict(data),
headers={"Authorization": f"Bearer {self.access_token}"},
cookies={"access-token": token} if token is not None else None,
)
return response
async def process_events(self, events: List[Event], batch: bool) -> None:
awake_events: List[Event] = []
try:
for event in events:
client_awake = await self.gather_event_data(event)
if client_awake:
client_awake = await self.send_message(
event, {"msg": "process_starts"}
)
if client_awake:
awake_events.append(event)
if not awake_events:
return
begin_time = time.time()
response = await self.call_prediction(awake_events, batch)
if response.has_exception:
for event in awake_events:
await self.send_message(
event,
{
"msg": "process_completed",
"output": {"error": str(response.exception)},
"success": False,
},
)
elif response.json.get("is_generating", False):
old_response = response
while response.json.get("is_generating", False):
# Python 3.7 doesn't have named tasks.
# In order to determine if a task was cancelled, we
# ping the websocket to see if it was closed mid-iteration.
if sys.version_info < (3, 8):
is_alive = await self.send_message(event, {"msg": "alive?"})
if not is_alive:
return
old_response = response
open_ws = []
for event in awake_events:
open = await self.send_message(
event,
{
"msg": "process_generating",
"output": old_response.json,
"success": old_response.status == 200,
},
)
open_ws.append(open)
awake_events = [
e for e, is_open in zip(awake_events, open_ws) if is_open
]
if not awake_events:
return
response = await self.call_prediction(awake_events, batch)
for event in awake_events:
if response.status != 200:
relevant_response = response
else:
relevant_response = old_response
await self.send_message(
event,
{
"msg": "process_completed",
"output": relevant_response.json,
"success": relevant_response.status == 200,
},
)
else:
output = copy.deepcopy(response.json)
for e, event in enumerate(awake_events):
if batch and "data" in output:
output["data"] = list(zip(*response.json.get("data")))[e]
await self.send_message(
event,
{
"msg": "process_completed",
"output": output,
"success": response.status == 200,
},
)
end_time = time.time()
if response.status == 200:
self.update_estimation(end_time - begin_time)
finally:
for event in awake_events:
try:
await event.disconnect()
except Exception:
pass
self.active_jobs[self.active_jobs.index(events)] = None
for event in awake_events:
await self.clean_event(event)
# Always reset the state of the iterator
# If the job finished successfully, this has no effect
# If the job is cancelled, this will enable future runs
# to start "from scratch"
await self.reset_iterators(event.session_hash, event.fn_index)
async def send_message(self, event, data: Dict) -> bool:
try:
await event.websocket.send_json(data=data)
return True
except:
await self.clean_event(event)
return False
async def get_message(self, event) -> PredictBody | None:
try:
data = await event.websocket.receive_json()
return PredictBody(**data)
except:
await self.clean_event(event)
return None
async def reset_iterators(self, session_hash: str, fn_index: int):
await AsyncRequest(
method=AsyncRequest.Method.POST,
url=f"{self.server_path}reset",
json={
"session_hash": session_hash,
"fn_index": fn_index,
},
)
|