File size: 18,187 Bytes
1721aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import pandas as pd
import statsmodels.api as sm
from statsmodels.sandbox.regression.gmm import IV2SLS
from dowhy import CausalModel # Primary path
from typing import Dict, Any, List, Union, Optional
import logging
from langchain.chat_models.base import BaseChatModel

from .diagnostics import run_iv_diagnostics
from .llm_assist import identify_instrument_variable, validate_instrument_assumptions_qualitative, interpret_iv_results

logger = logging.getLogger(__name__)

def build_iv_graph_gml(treatment: str, outcome: str, instruments: List[str], covariates: List[str]) -> str:
    """
    Constructs a GML string representing the causal graph for IV.

    Assumptions:
    - Instruments cause Treatment
    - Covariates cause Treatment and Outcome
    - Treatment causes Outcome
    - Instruments do NOT directly cause Outcome (Exclusion)
    - Instruments are NOT caused by Covariates (can be relaxed if needed)
    - Unobserved Confounder (U) affects Treatment and Outcome

    Args:
        treatment: Name of the treatment variable.
        outcome: Name of the outcome variable.
        instruments: List of instrument variable names.
        covariates: List of covariate names.

    Returns:
        A GML graph string.
    """
    nodes = []
    edges = []

    # Define nodes - ensure no duplicates if a variable is both instrument and covariate (SHOULD NOT HAPPEN)
    # Use a set to ensure unique variable names
    all_vars_set = set([treatment, outcome] + instruments + covariates + ['U'])
    all_vars = list(all_vars_set)
    
    for var in all_vars:
        nodes.append(f'node [ id "{var}" label "{var}" ]')

    # Define edges
    # Instruments -> Treatment
    for inst in instruments:
        edges.append(f'edge [ source "{inst}" target "{treatment}" ]')

    # Covariates -> Treatment
    for cov in covariates:
        # Ensure we don't add self-loops or duplicate edges if cov == treatment (shouldn't happen)
        if cov != treatment: 
            edges.append(f'edge [ source "{cov}" target "{treatment}" ]')

    # Covariates -> Outcome
    for cov in covariates:
         if cov != outcome:
            edges.append(f'edge [ source "{cov}" target "{outcome}" ]')

    # Treatment -> Outcome
    edges.append(f'edge [ source "{treatment}" target "{outcome}" ]')

    # Unobserved Confounder -> Treatment and Outcome
    edges.append(f'edge [ source "U" target "{treatment}" ]')
    edges.append(f'edge [ source "U" target "{outcome}" ]')

    # Core IV Assumption: Instruments are NOT caused by U (implicitly handled by not adding edge)
    # Core IV Assumption: Instruments do NOT directly cause Outcome (handled by not adding edge)

    # Format nodes and edges with indentation before inserting into f-string
    formatted_nodes = '\n  '.join(nodes)
    formatted_edges = '\n  '.join(edges)

    gml_string = f"""
graph [
  directed 1
  {formatted_nodes}
  {formatted_edges}
]
"""
    # Convert print to logger
    logger.debug("\n--- Generated GML Graph ---")
    logger.debug(gml_string)
    logger.debug("-------------------------\n")
    return gml_string

def format_iv_results(estimate: Optional[float], raw_results: Dict, diagnostics: Dict, treatment: str, outcome: str, instrument: List[str], method_used: str, llm: Optional[BaseChatModel] = None) -> Dict[str, Any]:
    """
    Formats the results from IV estimation into a standardized dictionary.

    Args:
        estimate: The point estimate of the causal effect.
        raw_results: Dictionary containing raw outputs from DoWhy/statsmodels.
        diagnostics: Dictionary containing diagnostic results.
        treatment: Name of the treatment variable.
        outcome: Name of the outcome variable.
        instrument: List of instrument variable names.
        method_used: 'dowhy' or 'statsmodels'.
        llm: Optional LLM instance for interpretation.

    Returns:
        Standardized results dictionary.
    """
    formatted = {
        "effect_estimate": estimate,
        "treatment_variable": treatment,
        "outcome_variable": outcome,
        "instrument_variables": instrument,
        "method_used": method_used,
        "diagnostics": diagnostics,
        "raw_results": {k: str(v) for k, v in raw_results.items() if "object" not in k}, # Avoid serializing large objects
        "confidence_interval": None,
        "standard_error": None,
        "p_value": None,
        "interpretation": "Placeholder"
    }

    # Extract details from statsmodels results if available
    sm_results = raw_results.get('statsmodels_results_object')
    if method_used == 'statsmodels' and sm_results:
        try:
            # Use .bse for standard error in statsmodels results
            formatted["standard_error"] = float(sm_results.bse[treatment])
            formatted["p_value"] = float(sm_results.pvalues[treatment])
            conf_int = sm_results.conf_int().loc[treatment].tolist()
            formatted["confidence_interval"] = [float(ci) for ci in conf_int]
        except AttributeError as e:
            logger.warning(f"Could not extract all details from statsmodels results object (likely missing attribute): {e}")
        except Exception as e:
            logger.warning(f"Error extracting details from statsmodels results: {e}")

    # Extract details from DoWhy results if available
    # Note: DoWhy's CausalEstimate object structure needs inspection
    dw_results = raw_results.get('dowhy_results_object')
    if method_used == 'dowhy' and dw_results:
         try:
             # Attempt common attributes, may need adjustment based on DoWhy version/output
             if hasattr(dw_results, 'stderr'):
                 formatted["standard_error"] = float(dw_results.stderr)
             if hasattr(dw_results, 'p_value'):
                  formatted["p_value"] = float(dw_results.p_value)
             if hasattr(dw_results, 'conf_intervals'):
                 # Assuming it's stored similarly to statsmodels, might need adjustment
                 ci = dw_results.conf_intervals().loc[treatment].tolist() # Fictional attribute/method - check DoWhy docs!
                 formatted["confidence_interval"] = [float(c) for c in ci]
             elif hasattr(dw_results, 'get_confidence_intervals'):
                  ci = dw_results.get_confidence_intervals() # Check DoWhy docs for format
                  # Check format of ci before converting
                  if isinstance(ci, (list, tuple)) and len(ci) == 2:
                      formatted["confidence_interval"] = [float(c) for c in ci] # Adapt parsing
                  else:
                      logger.warning(f"Could not parse confidence intervals from DoWhy object: {ci}")

         except Exception as e:
             logger.warning(f"Could not extract all details from DoWhy results: {e}. Structure might be different.", exc_info=True)
             # Avoid printing dir in production code, use logger.debug if needed for dev
             # logger.debug(f"DoWhy result object dir(): {dir(dw_results)}")

    # Generate LLM interpretation - pass llm object
    if estimate is not None:
        formatted["interpretation"] = interpret_iv_results(formatted, diagnostics, llm=llm)
    else:
        formatted["interpretation"] = "Estimation failed, cannot interpret results."


    return formatted

def estimate_effect(
    df: pd.DataFrame,
    treatment: str,
    outcome: str,
    covariates: List[str],
    query: Optional[str] = None, 
    dataset_description: Optional[str] = None, 
    llm: Optional[BaseChatModel] = None, 
    **kwargs
) -> Dict[str, Any]:
    
    instrument = kwargs.get('instrument_variable')
    if not instrument:
        return {"error": "Instrument variable ('instrument_variable') not found in kwargs.", "method_used": "none", "diagnostics": {}}
        
    instrument_list = [instrument] if isinstance(instrument, str) else instrument
    valid_instruments = [inst for inst in instrument_list if isinstance(inst, str)]
    clean_covariates = [cov for cov in covariates if cov not in valid_instruments]
    
    logger.info(f"\n--- Starting Instrumental Variable Estimation ---")
    logger.info(f"Treatment: {treatment}, Outcome: {outcome}, Instrument(s): {valid_instruments}, Original Covariates: {covariates}, Cleaned Covariates: {clean_covariates}")
    results = {}
    method_used = "none"
    sm_results_obj = None
    dw_results_obj = None
    identified_estimand = None # Initialize
    model = None             # Initialize
    refutation_results = {}  # Initialize

    # --- Input Validation --- 
    required_cols = [treatment, outcome] + valid_instruments + clean_covariates
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return {"error": f"Missing required columns in DataFrame: {missing_cols}", "method_used": method_used, "diagnostics": {}}
    if not valid_instruments:
        return {"error": "Instrument variable(s) must be provided and valid.", "method_used": method_used, "diagnostics": {}}

    # --- LLM Pre-Checks --- 
    if query and llm:
        qualitative_check = validate_instrument_assumptions_qualitative(treatment, outcome, valid_instruments, clean_covariates, query, llm=llm)
        results['llm_assumption_check'] = qualitative_check
        logger.info(f"LLM Qualitative Assumption Check: {qualitative_check}")
        
    # --- Build Graph and Instantiate CausalModel (Do this before estimation attempts) ---
    # This allows using identify_effect and refute_estimate even if DoWhy estimation fails
    try:
        graph = build_iv_graph_gml(treatment, outcome, valid_instruments, clean_covariates)
        if not graph:
            raise ValueError("Failed to build GML graph for DoWhy.")
        
        model = CausalModel(data=df, treatment=treatment, outcome=outcome, graph=graph)
        
        # Identify Effect (essential for refutation later)
        identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
        logger.debug("\nDoWhy Identified Estimand:")
        logger.debug(identified_estimand)
        if not identified_estimand:
             raise ValueError("DoWhy could not identify a valid estimand.")
             
    except Exception as model_init_e:
        logger.error(f"Failed to initialize CausalModel or identify effect: {model_init_e}", exc_info=True)
        # Cannot proceed without model/estimand for DoWhy or refutation
        results['error'] = f"Failed to initialize CausalModel: {model_init_e}"
        # Attempt statsmodels anyway? Or return error? Let's try statsmodels.
        pass # Allow falling through to statsmodels if desired

    # --- Primary Path: DoWhy Estimation --- 
    if model and identified_estimand and not kwargs.get('force_statsmodels', False):
        logger.info("\nAttempting estimation with DoWhy...")
        try:
            dw_results_obj = model.estimate_effect(
                identified_estimand,
                method_name="iv.instrumental_variable", 
                method_params={'iv_instrument_name': valid_instruments} 
            )
            logger.debug("\nDoWhy Estimation Result:")
            logger.debug(dw_results_obj)
            results['dowhy_estimate'] = dw_results_obj.value
            results['dowhy_results_object'] = dw_results_obj
            method_used = 'dowhy'
            logger.info("DoWhy estimation successful.")
        except Exception as e:
            logger.error(f"DoWhy IV estimation failed: {e}", exc_info=True)
            results['dowhy_error'] = str(e)
            if not kwargs.get('allow_fallback', True):
                 logger.warning("Fallback to statsmodels disabled. Estimation failed.")
                 method_used = "dowhy_failed"
                 # Still run diagnostics and format output
            else:
                logger.info("Proceeding to statsmodels fallback.")
    elif not model or not identified_estimand:
         logger.warning("Skipping DoWhy estimation due to CausalModel initialization/identification failure.")
         # Ensure we proceed to statsmodels if fallback is allowed
         if not kwargs.get('allow_fallback', True):
             logger.error("Cannot estimate effect: CausalModel failed and fallback disabled.")
             method_used = "dowhy_failed"
         else:
              logger.info("Proceeding to statsmodels fallback.")

    # --- Fallback Path: statsmodels IV2SLS --- 
    if method_used not in ['dowhy', 'dowhy_failed']:
        logger.info("\nAttempting estimation with statsmodels IV2SLS...")
        try:
            df_copy = df.copy().dropna(subset=required_cols) 
            if df_copy.empty:
                 raise ValueError("DataFrame becomes empty after dropping NAs in required columns.")
            df_copy['intercept'] = 1
            exog_regressors = ['intercept'] + clean_covariates
            endog_var = treatment 
            all_instruments_for_sm = list(dict.fromkeys(exog_regressors + valid_instruments))
            endog_data = df_copy[outcome]
            exog_data_sm_cols = list(dict.fromkeys(exog_regressors + [endog_var]))
            exog_data_sm = df_copy[exog_data_sm_cols]
            instrument_data_sm = df_copy[all_instruments_for_sm]
            num_endog = 1 
            num_external_iv = len(valid_instruments) 
            if num_endog > num_external_iv:
                 raise ValueError(f"Model underidentified: More endogenous regressors ({num_endog}) than unique external instruments ({num_external_iv}).")
            iv_model = IV2SLS(endog=endog_data, exog=exog_data_sm, instrument=instrument_data_sm)
            sm_results_obj = iv_model.fit()
            logger.info("\nStatsmodels Estimation Summary:")
            logger.info(f"  Estimate for {treatment}: {sm_results_obj.params[treatment]}")
            logger.info(f"  Std Error: {sm_results_obj.bse[treatment]}")
            logger.info(f"  P-value: {sm_results_obj.pvalues[treatment]}")
            results['statsmodels_estimate'] = sm_results_obj.params[treatment]
            results['statsmodels_results_object'] = sm_results_obj
            method_used = 'statsmodels'
            logger.info("Statsmodels estimation successful.")
        except Exception as sm_e:
            logger.error(f"Statsmodels IV estimation also failed: {sm_e}", exc_info=True)
            results['statsmodels_error'] = str(sm_e)
            method_used = 'statsmodels_failed' if method_used == "none" else "dowhy_failed_sm_failed"

    # --- Diagnostics --- 
    logger.info("\nRunning diagnostics...")
    diagnostics = run_iv_diagnostics(df, treatment, outcome, valid_instruments, clean_covariates, sm_results_obj, dw_results_obj)
    results['diagnostics'] = diagnostics

    # --- Refutation Step --- 
    final_estimate_value = results.get('dowhy_estimate') if method_used == 'dowhy' else results.get('statsmodels_estimate')
    
    # Only run permute refuter if estimate is valid AND came from DoWhy
    if method_used == 'dowhy' and dw_results_obj and final_estimate_value is not None: 
        logger.info("\nRunning refutation test (Placebo Treatment - Permute - requires DoWhy estimate object)...")
        try:
            # Pass the actual DoWhy estimate object
            refuter_result = model.refute_estimate(
                identified_estimand, 
                dw_results_obj, # Pass the original DoWhy result object
                method_name="placebo_treatment_refuter", 
                placebo_type="permute" # Necessary for IV according to docs/examples
            )
            logger.info("Refutation test completed.")
            logger.debug(f"Refuter Result:\n{refuter_result}")
            # Store relevant info from refuter_result (check its structure)
            refutation_results = {
                "refuter": "placebo_treatment_refuter",
                "new_effect": getattr(refuter_result, 'new_effect', 'N/A'),
                "p_value": getattr(refuter_result, 'refutation_result', {}).get('p_value', 'N/A') if hasattr(refuter_result, 'refutation_result') else 'N/A',
                # Passed if p-value > 0.05 (or not statistically significant)
                "passed": getattr(refuter_result, 'refutation_result', {}).get('is_statistically_significant', None) == False if hasattr(refuter_result, 'refutation_result') else None 
            }
        except Exception as refute_e:
            logger.error(f"Refutation test failed: {refute_e}", exc_info=True)
            refutation_results = {"error": f"Refutation failed: {refute_e}"}
            
    elif final_estimate_value is not None and method_used == 'statsmodels':
        logger.warning("Skipping placebo permutation refuter: Estimate was generated by statsmodels, not DoWhy's IV estimator.")
        refutation_results = {"status": "skipped_wrong_estimator_for_permute"}
        
    elif final_estimate_value is None:
        logger.warning("Skipping refutation test because estimation failed.")
        refutation_results = {"status": "skipped_due_to_failed_estimation"}
        
    else: # Model or estimand failed earlier, or unknown method_used
        logger.warning(f"Skipping refutation test due to earlier failure (method_used: {method_used}).")
        refutation_results = {"status": "skipped_due_to_model_failure_or_unknown"}
        
    results['refutation_results'] = refutation_results # Add to main results

    # --- Formatting Results --- 
    if final_estimate_value is None and method_used not in ['dowhy', 'statsmodels']:
        logger.error("ERROR: Both estimation methods failed.")
        # Ensure error key exists if not set earlier
        if 'error' not in results:
            results['error'] = "Both DoWhy and statsmodels IV estimation failed."

    logger.info("\n--- Formatting Final Results ---")
    formatted_results = format_iv_results(
        final_estimate_value, # Pass the numeric value
        results, # Pass the dict containing estimate objects and refutation results
        diagnostics,
        treatment,
        outcome,
        valid_instruments,
        method_used,
        llm=llm
    )

    logger.info("--- Instrumental Variable Estimation Complete ---\n")
    return formatted_results