File size: 28,721 Bytes
94f0dd7
 
 
 
 
 
 
 
 
b14532a
94f0dd7
 
 
 
 
 
 
 
4133328
8b32c9f
085f97c
2c009f7
ac51b66
4133328
94f0dd7
 
 
 
 
 
 
 
 
 
 
8e63844
 
b14532a
ba6cd78
b14532a
94f0dd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e63844
94f0dd7
b8a426e
56dc002
94f0dd7
 
7955e7d
 
 
 
 
94f0dd7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
# -*- coding: utf-8 -*-
"""MWP_Solver_-_Transformer_with_Multi-head_Attention_Block (1).ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1Tn_j0k8EJ7ny_h7Pjm0stJhNMG4si_y_
"""

# ! pip install -q gradio

import pandas as pd
import re
import os
import time
import random
import numpy as np

os.system("pip install tensorflow")
os.system("pip install scikit-learn")
os.system("pip install spacy")
os.system("pip install nltk")
os.system("spacy download en_core_web_sm")

import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from sklearn.model_selection import train_test_split

import pickle

import spacy

from nltk.translate.bleu_score import corpus_bleu

import gradio as gr

os.system("wget -nc 'https://docs.google.com/uc?export=download&id=1Y8Ee4lUs30BAfFtL3d3VjwChmbDG7O6H' -O data_final.pkl")
os.system('''wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1gAQVaxg_2mNcr8qwx0J2UwpkvoJgLu6a' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p')&id=1gAQVaxg_2mNcr8qwx0J2UwpkvoJgLu6a" -O checkpoints.zip && rm -rf /tmp/cookies.txt''')
os.system("unzip -n './checkpoints.zip' -d './'")

nlp = spacy.load("en_core_web_sm")

tf.__version__

with open('data_final.pkl', 'rb') as f:
  df = pickle.load(f)

df.shape

df.head()

input_exps = list(df['Question'].values)

def convert_eqn(eqn):
  '''
  Add a space between every character in the equation string.
  Eg: 'x = 23 + 88' becomes 'x =  2 3 + 8 8'
  '''
  elements = list(eqn)
  return ' '.join(elements)

target_exps = list(df['Equation'].apply(lambda x: convert_eqn(x)).values)

# Input: Word problem
input_exps[:5]

# Target: Equation
target_exps[:5]

len(pd.Series(input_exps)), len(pd.Series(input_exps).unique())

len(pd.Series(target_exps)), len(pd.Series(target_exps).unique())

def preprocess_input(sentence):
  '''
  For the word problem, convert everything to lowercase, add spaces around all
  punctuations and digits, and remove any extra spaces. 
  '''
  sentence = sentence.lower().strip()
  sentence = re.sub(r"([?.!,’])", r" \1 ", sentence)
  sentence = re.sub(r"([0-9])", r" \1 ", sentence)
  sentence = re.sub(r'[" "]+', " ", sentence)
  sentence = sentence.rstrip().strip()
  return sentence

def preprocess_target(sentence):
  '''
  For the equation, convert it to lowercase and remove extra spaces
  '''
  sentence = sentence.lower().strip()
  return sentence

preprocessed_input_exps = list(map(preprocess_input, input_exps))
preprocessed_target_exps = list(map(preprocess_target, target_exps))

preprocessed_input_exps[:5]

preprocessed_target_exps[:5]

def tokenize(lang):
  '''
  Tokenize the given list of strings and return the tokenized output
  along with the fitted tokenizer.
  '''
  lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='')
  lang_tokenizer.fit_on_texts(lang)
  tensor = lang_tokenizer.texts_to_sequences(lang)
  return tensor, lang_tokenizer

input_tensor, inp_lang_tokenizer = tokenize(preprocessed_input_exps)

len(inp_lang_tokenizer.word_index)

target_tensor, targ_lang_tokenizer = tokenize(preprocessed_target_exps)

old_len = len(targ_lang_tokenizer.word_index)

def append_start_end(x,last_int):
  '''
  Add integers for start and end tokens for input/target exps
  '''
  l = []
  l.append(last_int+1)
  l.extend(x)
  l.append(last_int+2)
  return l

input_tensor_list = [append_start_end(i,len(inp_lang_tokenizer.word_index)) for i in input_tensor]
target_tensor_list = [append_start_end(i,len(targ_lang_tokenizer.word_index)) for i in target_tensor]

# Pad all sequences such that they are of equal length
input_tensor = tf.keras.preprocessing.sequence.pad_sequences(input_tensor_list, padding='post')
target_tensor = tf.keras.preprocessing.sequence.pad_sequences(target_tensor_list, padding='post')

input_tensor

target_tensor

# Here we are increasing the vocabulary size of the target, by adding a
# few extra vocabulary words (which will not actually be used) as otherwise the
# small vocab size causes issues downstream in the network.
keys = [str(i) for i in range(10,51)]
for i,k in enumerate(keys):
  targ_lang_tokenizer.word_index[k]=len(targ_lang_tokenizer.word_index)+i+4

len(targ_lang_tokenizer.word_index)

# Creating training and validation sets
input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor,
                                                                                                target_tensor,
                                                                                                test_size=0.05,
                                                                                                random_state=42)

len(input_tensor_train)

len(input_tensor_val)

BUFFER_SIZE = len(input_tensor_train)
BATCH_SIZE = 64
steps_per_epoch = len(input_tensor_train)//BATCH_SIZE
dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train)).shuffle(BUFFER_SIZE)
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
num_layers = 4
d_model = 128
dff = 512
num_heads = 8
input_vocab_size = len(inp_lang_tokenizer.word_index)+3
target_vocab_size = len(targ_lang_tokenizer.word_index)+3
dropout_rate = 0.0

example_input_batch, example_target_batch = next(iter(dataset))
example_input_batch.shape, example_target_batch.shape

# We provide positional information about the data to the model,
# otherwise each sentence will be treated as Bag of Words
def get_angles(pos, i, d_model):
  angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
  return pos * angle_rates

def positional_encoding(position, d_model):
  angle_rads = get_angles(np.arange(position)[:, np.newaxis],
                          np.arange(d_model)[np.newaxis, :],
                          d_model)
  
  # apply sin to even indices in the array; 2i
  angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
  
  # apply cos to odd indices in the array; 2i+1
  angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
    
  pos_encoding = angle_rads[np.newaxis, ...]
    
  return tf.cast(pos_encoding, dtype=tf.float32)

# mask all elements are that not words (padding) so that it is not treated as input
def create_padding_mask(seq):
  seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
  
  # add extra dimensions to add the padding
  # to the attention logits.
  return seq[:, tf.newaxis, tf.newaxis, :]  # (batch_size, 1, 1, seq_len)

def create_look_ahead_mask(size):
  mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
  return mask

dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

def scaled_dot_product_attention(q, k, v, mask):
  matmul_qk = tf.matmul(q, k, transpose_b=True)  # (..., seq_len_q, seq_len_k)
  
  # scale matmul_qk
  dk = tf.cast(tf.shape(k)[-1], tf.float32)
  scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)

  # add the mask to the scaled tensor.
  if mask is not None:
    scaled_attention_logits += (mask * -1e9)  

  # softmax is normalized on the last axis (seq_len_k) so that the scores
  # add up to 1.
  attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)  # (..., seq_len_q, seq_len_k)

  output = tf.matmul(attention_weights, v)  # (..., seq_len_q, depth_v)

  return output, attention_weights

class MultiHeadAttention(tf.keras.layers.Layer):
  def __init__(self, d_model, num_heads):
    super(MultiHeadAttention, self).__init__()
    self.num_heads = num_heads
    self.d_model = d_model
    
    assert d_model % self.num_heads == 0
    
    self.depth = d_model // self.num_heads
    
    self.wq = tf.keras.layers.Dense(d_model)
    self.wk = tf.keras.layers.Dense(d_model)
    self.wv = tf.keras.layers.Dense(d_model)
    
    self.dense = tf.keras.layers.Dense(d_model)
        
  def split_heads(self, x, batch_size):
    """Split the last dimension into (num_heads, depth).
    Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
    """
    x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
    return tf.transpose(x, perm=[0, 2, 1, 3])
    
  def call(self, v, k, q, mask):
    batch_size = tf.shape(q)[0]
    
    q = self.wq(q)  # (batch_size, seq_len, d_model)
    k = self.wk(k)  # (batch_size, seq_len, d_model)
    v = self.wv(v)  # (batch_size, seq_len, d_model)
    
    q = self.split_heads(q, batch_size)  # (batch_size, num_heads, seq_len_q, depth)
    k = self.split_heads(k, batch_size)  # (batch_size, num_heads, seq_len_k, depth)
    v = self.split_heads(v, batch_size)  # (batch_size, num_heads, seq_len_v, depth)
    
    # scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
    # attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
    scaled_attention, attention_weights = scaled_dot_product_attention(
        q, k, v, mask)
    
    scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])  # (batch_size, seq_len_q, num_heads, depth)

    concat_attention = tf.reshape(scaled_attention, 
                                  (batch_size, -1, self.d_model))  # (batch_size, seq_len_q, d_model)

    output = self.dense(concat_attention)  # (batch_size, seq_len_q, d_model)
        
    return output, attention_weights

def point_wise_feed_forward_network(d_model, dff):
  return tf.keras.Sequential([
      tf.keras.layers.Dense(dff, activation='relu'),  # (batch_size, seq_len, dff)
      tf.keras.layers.Dense(d_model)  # (batch_size, seq_len, d_model)
  ])

class EncoderLayer(tf.keras.layers.Layer):
  def __init__(self, d_model, num_heads, dff, rate=0.1):
    super(EncoderLayer, self).__init__()

    self.mha = MultiHeadAttention(d_model, num_heads)
    self.ffn = point_wise_feed_forward_network(d_model, dff)

    # normalize data per feature instead of batch
    self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
    self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
    
    self.dropout1 = tf.keras.layers.Dropout(rate)
    self.dropout2 = tf.keras.layers.Dropout(rate)
    
  def call(self, x, training, mask):
    # Multi-head attention layer
    attn_output, _ = self.mha(x, x, x, mask) 
    attn_output = self.dropout1(attn_output, training=training)
    # add residual connection to avoid vanishing gradient problem
    out1 = self.layernorm1(x + attn_output)
    
    # Feedforward layer
    ffn_output = self.ffn(out1)
    ffn_output = self.dropout2(ffn_output, training=training)
    # add residual connection to avoid vanishing gradient problem
    out2 = self.layernorm2(out1 + ffn_output)
    return out2

class Encoder(tf.keras.layers.Layer):
  def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
               maximum_position_encoding, rate=0.1):
    super(Encoder, self).__init__()

    self.d_model = d_model
    self.num_layers = num_layers
    
    self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
    self.pos_encoding = positional_encoding(maximum_position_encoding, 
                                            self.d_model)
    
    # Create encoder layers (count: num_layers)
    self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) 
                       for _ in range(num_layers)]
  
    self.dropout = tf.keras.layers.Dropout(rate)
        
  def call(self, x, training, mask):

    seq_len = tf.shape(x)[1]

    # adding embedding and position encoding.
    x = self.embedding(x)  
    x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
    x += self.pos_encoding[:, :seq_len, :]

    x = self.dropout(x, training=training)
    
    for i in range(self.num_layers):
      x = self.enc_layers[i](x, training, mask)
    
    return x

class DecoderLayer(tf.keras.layers.Layer):
  def __init__(self, d_model, num_heads, dff, rate=0.1):
    super(DecoderLayer, self).__init__()

    self.mha1 = MultiHeadAttention(d_model, num_heads)
    self.mha2 = MultiHeadAttention(d_model, num_heads)

    self.ffn = point_wise_feed_forward_network(d_model, dff)
 
    self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
    self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
    self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
    
    self.dropout1 = tf.keras.layers.Dropout(rate)
    self.dropout2 = tf.keras.layers.Dropout(rate)
    self.dropout3 = tf.keras.layers.Dropout(rate)
    
    
  def call(self, x, enc_output, training, 
           look_ahead_mask, padding_mask):

    # Masked multihead attention layer (padding + look-ahead)
    attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask)
    attn1 = self.dropout1(attn1, training=training)
    # again add residual connection
    out1 = self.layernorm1(attn1 + x)
    
    # Masked multihead attention layer (only padding)
    # with input from encoder as Key and Value, and input from previous layer as Query
    attn2, attn_weights_block2 = self.mha2(
        enc_output, enc_output, out1, padding_mask)
    attn2 = self.dropout2(attn2, training=training)
    # again add residual connection
    out2 = self.layernorm2(attn2 + out1)
    
    # Feedforward layer
    ffn_output = self.ffn(out2)
    ffn_output = self.dropout3(ffn_output, training=training)
    # again add residual connection
    out3 = self.layernorm3(ffn_output + out2)
    return out3, attn_weights_block1, attn_weights_block2

class Decoder(tf.keras.layers.Layer):
  def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size,
               maximum_position_encoding, rate=0.1):
    super(Decoder, self).__init__()

    self.d_model = d_model
    self.num_layers = num_layers
     
    self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model)
    self.pos_encoding = positional_encoding(maximum_position_encoding, d_model)
    
    # Create decoder layers (count: num_layers)
    self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) 
                       for _ in range(num_layers)]
    self.dropout = tf.keras.layers.Dropout(rate)
    
  def call(self, x, enc_output, training, 
           look_ahead_mask, padding_mask):

    seq_len = tf.shape(x)[1]
    attention_weights = {}
    
    x = self.embedding(x)  # (batch_size, target_seq_len, d_model)
    
    x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
    
    x += self.pos_encoding[:,:seq_len,:]
    
    x = self.dropout(x, training=training)

    for i in range(self.num_layers):
      x, block1, block2 = self.dec_layers[i](x, enc_output, training,
                                             look_ahead_mask, padding_mask)
      
      # store attenion weights, they can be used to visualize while translating
      attention_weights['decoder_layer{}_block1'.format(i+1)] = block1
      attention_weights['decoder_layer{}_block2'.format(i+1)] = block2
    
    return x, attention_weights

class Transformer(tf.keras.Model):
  def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, 
               target_vocab_size, pe_input, pe_target, rate=0.1):
    super(Transformer, self).__init__()

    self.encoder = Encoder(num_layers, d_model, num_heads, dff, 
                           input_vocab_size, pe_input, rate)

    self.decoder = Decoder(num_layers, d_model, num_heads, dff, 
                           target_vocab_size, pe_target, rate)

    self.final_layer = tf.keras.layers.Dense(target_vocab_size)
    
  def call(self, inp, tar, training, enc_padding_mask, 
           look_ahead_mask, dec_padding_mask):

    # Pass the input to the encoder
    enc_output = self.encoder(inp, training, enc_padding_mask)
    
    # Pass the encoder output to the decoder
    dec_output, attention_weights = self.decoder(
        tar, enc_output, training, look_ahead_mask, dec_padding_mask)
    
    # Pass the decoder output to the last linear layer
    final_output = self.final_layer(dec_output)
    
    return final_output, attention_weights

class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
  def __init__(self, d_model, warmup_steps=4000):
    super(CustomSchedule, self).__init__()
    
    self.d_model = d_model
    self.d_model = tf.cast(self.d_model, tf.float32)

    self.warmup_steps = warmup_steps
    
  def __call__(self, step):
    arg1 = tf.math.rsqrt(step)
    arg2 = step * (self.warmup_steps ** -1.5)
    
    return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)

learning_rate = CustomSchedule(d_model)

# Adam optimizer with a custom learning rate
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, 
                                     epsilon=1e-9)

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=True, reduction='none')

def loss_function(real, pred):
  # Apply a mask to paddings (0)
  mask = tf.math.logical_not(tf.math.equal(real, 0))
  loss_ = loss_object(real, pred)

  mask = tf.cast(mask, dtype=loss_.dtype)
  loss_ *= mask
  
  return tf.reduce_mean(loss_)

train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
    name='train_accuracy')

transformer = Transformer(num_layers, d_model, num_heads, dff,
                          input_vocab_size, target_vocab_size, 
                          pe_input=input_vocab_size, 
                          pe_target=target_vocab_size,
                          rate=dropout_rate)

def create_masks(inp, tar):
  # Encoder padding mask
  enc_padding_mask = create_padding_mask(inp)
  
  # Decoder padding mask
  dec_padding_mask = create_padding_mask(inp)
  
  # Look ahead mask (for hiding the rest of the sequence in the 1st decoder attention layer)
  look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
  dec_target_padding_mask = create_padding_mask(tar)
  combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)
  
  return enc_padding_mask, combined_mask, dec_padding_mask

# drive_root = '/gdrive/My Drive/'
drive_root = './'

checkpoint_dir = os.path.join(drive_root, "checkpoints")
checkpoint_dir = os.path.join(checkpoint_dir, "training_checkpoints/moops_transfomer")

print("Checkpoints directory is", checkpoint_dir)
if os.path.exists(checkpoint_dir):
  print("Checkpoints folder already exists")
else:
  print("Creating a checkpoints directory")
  os.makedirs(checkpoint_dir)


checkpoint = tf.train.Checkpoint(transformer=transformer,
                           optimizer=optimizer)

ckpt_manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=5)

latest = ckpt_manager.latest_checkpoint
latest

if latest:
  epoch_num = int(latest.split('/')[-1].split('-')[-1])
  checkpoint.restore(latest)
  print ('Latest checkpoint restored!!')
else:
  epoch_num = 0

epoch_num

# EPOCHS = 17

# def train_step(inp, tar):
#   tar_inp = tar[:, :-1]
#   tar_real = tar[:, 1:]
  
#   enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)
  
#   with tf.GradientTape() as tape:
#     predictions, _ = transformer(inp, tar_inp, 
#                                  True, 
#                                  enc_padding_mask, 
#                                  combined_mask, 
#                                  dec_padding_mask)
#     loss = loss_function(tar_real, predictions)

#   gradients = tape.gradient(loss, transformer.trainable_variables)    
#   optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
  
#   train_loss(loss)
#   train_accuracy(tar_real, predictions)

# for epoch in range(epoch_num, EPOCHS):
#   start = time.time()
  
#   train_loss.reset_states()
#   train_accuracy.reset_states()
  
#   # inp -> question, tar -> equation
#   for (batch, (inp, tar)) in enumerate(dataset):
#     train_step(inp, tar)
    
#     if batch % 50 == 0:
#       print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format(
#           epoch + 1, batch, train_loss.result(), train_accuracy.result()))
      
#   ckpt_save_path = ckpt_manager.save()
#   print ('Saving checkpoint for epoch {} at {}'.format(epoch+1,
#                                                          ckpt_save_path))
    
#   print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1, 
#                                                 train_loss.result(), 
#                                                 train_accuracy.result()))

#   print ('Time taken for 1 epoch: {} secs\n'.format(time.time() - start))

def evaluate(inp_sentence):
  start_token = [len(inp_lang_tokenizer.word_index)+1]
  end_token = [len(inp_lang_tokenizer.word_index)+2]
  
  # inp sentence is the word problem, hence adding the start and end token
  inp_sentence = start_token + [inp_lang_tokenizer.word_index.get(i, inp_lang_tokenizer.word_index['john']) for i in preprocess_input(inp_sentence).split(' ')] + end_token
  encoder_input = tf.expand_dims(inp_sentence, 0)
  
  # start with equation's start token
  decoder_input = [old_len+1]
  output = tf.expand_dims(decoder_input, 0)
    
  for i in range(MAX_LENGTH):
    enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
        encoder_input, output)
  
    predictions, attention_weights = transformer(encoder_input, 
                                                 output,
                                                 False,
                                                 enc_padding_mask,
                                                 combined_mask,
                                                 dec_padding_mask)
    
    # select the last word from the seq_len dimension
    predictions = predictions[: ,-1:, :] 
    predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
    
    # return the result if the predicted_id is equal to the end token
    if predicted_id == old_len+2:
      return tf.squeeze(output, axis=0), attention_weights
    
    # concatentate the predicted_id to the output which is given to the decoder
    # as its input.
    output = tf.concat([output, predicted_id], axis=-1)
  return tf.squeeze(output, axis=0), attention_weights

# def plot_attention_weights(attention, sentence, result, layer):
#   fig = plt.figure(figsize=(16, 8))
  
#   sentence = preprocess_input(sentence)
  
#   attention = tf.squeeze(attention[layer], axis=0)
  
#   for head in range(attention.shape[0]):
#     ax = fig.add_subplot(2, 4, head+1)
    
#     # plot the attention weights
#     ax.matshow(attention[head][:-1, :], cmap='viridis')
    
#     fontdict = {'fontsize': 10}
    
#     ax.set_xticks(range(len(sentence.split(' '))+2))
#     ax.set_yticks(range(len([targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) 
#                         if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]])+3))
    
    
#     ax.set_ylim(len([targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) 
#                         if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]]), -0.5)
        
#     ax.set_xticklabels(
#         ['<start>']+sentence.split(' ')+['<end>'], 
#         fontdict=fontdict, rotation=90)
    
#     ax.set_yticklabels([targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) 
#                         if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]], 
#                        fontdict=fontdict)
    
#     ax.set_xlabel('Head {}'.format(head+1))
  
#   plt.tight_layout()
#   plt.show()

MAX_LENGTH = 40

def translate(sentence, plot=''):

    

    result, attention_weights = evaluate(sentence)

    # use the result tokens to convert prediction into a list of characters
    # (not inclusing padding, start and end tokens)
    predicted_sentence = [targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) if (i < len(targ_lang_tokenizer.word_index) and i not in [0,46,47])]  

#   print('Input: {}'.format(sentence))
    return ''.join(predicted_sentence)
  
    if plot:
        plot_attention_weights(attention_weights, sentence, result, plot)

# def evaluate_results(inp_sentence):
#   start_token = [len(inp_lang_tokenizer.word_index)+1]
#   end_token = [len(inp_lang_tokenizer.word_index)+2]
  
#   # inp sentence is the word problem, hence adding the start and end token
#   inp_sentence = start_token + list(inp_sentence.numpy()[0]) + end_token
  
#   encoder_input = tf.expand_dims(inp_sentence, 0)
  
  
#   decoder_input = [old_len+1]
#   output = tf.expand_dims(decoder_input, 0)
    
#   for i in range(MAX_LENGTH):
#     enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
#         encoder_input, output)
  
#     # predictions.shape == (batch_size, seq_len, vocab_size)
#     predictions, attention_weights = transformer(encoder_input, 
#                                                  output,
#                                                  False,
#                                                  enc_padding_mask,
#                                                  combined_mask,
#                                                  dec_padding_mask)
    
#     # select the last word from the seq_len dimension
#     predictions = predictions[: ,-1:, :]  # (batch_size, 1, vocab_size)

#     predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
    
#     # return the result if the predicted_id is equal to the end token
#     if predicted_id == old_len+2:
#       return tf.squeeze(output, axis=0), attention_weights
    
#     # concatentate the predicted_id to the output which is given to the decoder
#     # as its input.
#     output = tf.concat([output, predicted_id], axis=-1)

#   return tf.squeeze(output, axis=0), attention_weights

# dataset_val = tf.data.Dataset.from_tensor_slices((input_tensor_val, target_tensor_val)).shuffle(BUFFER_SIZE)
# dataset_val = dataset_val.batch(1, drop_remainder=True)

# y_true = []
# y_pred = []
# acc_cnt = 0

# a = 0
# for (inp_val_batch, target_val_batch) in iter(dataset_val):
#   a += 1
#   if a % 100 == 0:
#     print(a)
#     print("Accuracy count: ",acc_cnt)
#     print('------------------')
#   target_sentence = ''
#   for i in target_val_batch.numpy()[0]:
#     if i not in [0,old_len+1,old_len+2]:
#       target_sentence += (targ_lang_tokenizer.index_word[i] + ' ')
  
#   y_true.append([target_sentence.split(' ')[:-1]])
  
#   result, _ = evaluate_results(inp_val_batch)
#   predicted_sentence = [targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) if (i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2])] 
#   y_pred.append(predicted_sentence)
  
#   if target_sentence.split(' ')[:-1] == predicted_sentence:
#     acc_cnt += 1

# len(y_true), len(y_pred)

# print('Corpus BLEU score of the model: ', corpus_bleu(y_true, y_pred))

# print('Accuracy of the model: ', acc_cnt/len(input_tensor_val))

check_str = ' '.join([inp_lang_tokenizer.index_word[i] for i in input_tensor_val[242] if i not in [0,
                                                                                                  len(inp_lang_tokenizer.word_index)+1,
                                                                                                  len(inp_lang_tokenizer.word_index)+2]])

check_str

translate(check_str)

#'victor had some car . john took 3 0 from him . now victor has 6 8 car . how many car victor had originally ?'
translate('Nafis had 31 raspberry . He slice each raspberry into 19 slices . How many raspberry slices did Denise make?')

interface = gr.Interface(
    fn = translate,
    inputs = gr.inputs.Textbox(lines = 2), 
    outputs = 'text',
    examples = [
                ['Rachel bought two coloring books. One had 23 pictures and the other had 32. After one week she had colored 19 of the pictures. How many pictures does she still have to color?'],
                ['Denise had 31 raspberries. He slices each raspberry into 19 slices. How many raspberry slices did Denise make?'],
                ['A painter needed to paint 12 rooms in a building. Each room takes 7 hours to paint. If he already painted 5 rooms, how much longer will he take to paint the rest?'],
                ['Jerry had 135 pens. John took 19 pens from him. How many pens Jerry have left?'],
                ['Donald had some apples. Hillary took 20 apples from him. Now Donald has 100 apples. How many apples Donald had before?']
    ],
    title = 'Mathbot',
    description = 'Enter a simple math word problem and our AI will try to predict an expression to solve it. Mathbot occasionally makes mistakes. Feel free to press "flag" if you encounter such a scenario.',
    )
interface.launch()