Spaces:
Runtime error
Runtime error
File size: 28,721 Bytes
94f0dd7 b14532a 94f0dd7 4133328 8b32c9f 085f97c 2c009f7 ac51b66 4133328 94f0dd7 8e63844 b14532a ba6cd78 b14532a 94f0dd7 8e63844 94f0dd7 b8a426e 56dc002 94f0dd7 7955e7d 94f0dd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 |
# -*- coding: utf-8 -*-
"""MWP_Solver_-_Transformer_with_Multi-head_Attention_Block (1).ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1Tn_j0k8EJ7ny_h7Pjm0stJhNMG4si_y_
"""
# ! pip install -q gradio
import pandas as pd
import re
import os
import time
import random
import numpy as np
os.system("pip install tensorflow")
os.system("pip install scikit-learn")
os.system("pip install spacy")
os.system("pip install nltk")
os.system("spacy download en_core_web_sm")
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from sklearn.model_selection import train_test_split
import pickle
import spacy
from nltk.translate.bleu_score import corpus_bleu
import gradio as gr
os.system("wget -nc 'https://docs.google.com/uc?export=download&id=1Y8Ee4lUs30BAfFtL3d3VjwChmbDG7O6H' -O data_final.pkl")
os.system('''wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1gAQVaxg_2mNcr8qwx0J2UwpkvoJgLu6a' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p')&id=1gAQVaxg_2mNcr8qwx0J2UwpkvoJgLu6a" -O checkpoints.zip && rm -rf /tmp/cookies.txt''')
os.system("unzip -n './checkpoints.zip' -d './'")
nlp = spacy.load("en_core_web_sm")
tf.__version__
with open('data_final.pkl', 'rb') as f:
df = pickle.load(f)
df.shape
df.head()
input_exps = list(df['Question'].values)
def convert_eqn(eqn):
'''
Add a space between every character in the equation string.
Eg: 'x = 23 + 88' becomes 'x = 2 3 + 8 8'
'''
elements = list(eqn)
return ' '.join(elements)
target_exps = list(df['Equation'].apply(lambda x: convert_eqn(x)).values)
# Input: Word problem
input_exps[:5]
# Target: Equation
target_exps[:5]
len(pd.Series(input_exps)), len(pd.Series(input_exps).unique())
len(pd.Series(target_exps)), len(pd.Series(target_exps).unique())
def preprocess_input(sentence):
'''
For the word problem, convert everything to lowercase, add spaces around all
punctuations and digits, and remove any extra spaces.
'''
sentence = sentence.lower().strip()
sentence = re.sub(r"([?.!,’])", r" \1 ", sentence)
sentence = re.sub(r"([0-9])", r" \1 ", sentence)
sentence = re.sub(r'[" "]+', " ", sentence)
sentence = sentence.rstrip().strip()
return sentence
def preprocess_target(sentence):
'''
For the equation, convert it to lowercase and remove extra spaces
'''
sentence = sentence.lower().strip()
return sentence
preprocessed_input_exps = list(map(preprocess_input, input_exps))
preprocessed_target_exps = list(map(preprocess_target, target_exps))
preprocessed_input_exps[:5]
preprocessed_target_exps[:5]
def tokenize(lang):
'''
Tokenize the given list of strings and return the tokenized output
along with the fitted tokenizer.
'''
lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='')
lang_tokenizer.fit_on_texts(lang)
tensor = lang_tokenizer.texts_to_sequences(lang)
return tensor, lang_tokenizer
input_tensor, inp_lang_tokenizer = tokenize(preprocessed_input_exps)
len(inp_lang_tokenizer.word_index)
target_tensor, targ_lang_tokenizer = tokenize(preprocessed_target_exps)
old_len = len(targ_lang_tokenizer.word_index)
def append_start_end(x,last_int):
'''
Add integers for start and end tokens for input/target exps
'''
l = []
l.append(last_int+1)
l.extend(x)
l.append(last_int+2)
return l
input_tensor_list = [append_start_end(i,len(inp_lang_tokenizer.word_index)) for i in input_tensor]
target_tensor_list = [append_start_end(i,len(targ_lang_tokenizer.word_index)) for i in target_tensor]
# Pad all sequences such that they are of equal length
input_tensor = tf.keras.preprocessing.sequence.pad_sequences(input_tensor_list, padding='post')
target_tensor = tf.keras.preprocessing.sequence.pad_sequences(target_tensor_list, padding='post')
input_tensor
target_tensor
# Here we are increasing the vocabulary size of the target, by adding a
# few extra vocabulary words (which will not actually be used) as otherwise the
# small vocab size causes issues downstream in the network.
keys = [str(i) for i in range(10,51)]
for i,k in enumerate(keys):
targ_lang_tokenizer.word_index[k]=len(targ_lang_tokenizer.word_index)+i+4
len(targ_lang_tokenizer.word_index)
# Creating training and validation sets
input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor,
target_tensor,
test_size=0.05,
random_state=42)
len(input_tensor_train)
len(input_tensor_val)
BUFFER_SIZE = len(input_tensor_train)
BATCH_SIZE = 64
steps_per_epoch = len(input_tensor_train)//BATCH_SIZE
dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train)).shuffle(BUFFER_SIZE)
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
num_layers = 4
d_model = 128
dff = 512
num_heads = 8
input_vocab_size = len(inp_lang_tokenizer.word_index)+3
target_vocab_size = len(targ_lang_tokenizer.word_index)+3
dropout_rate = 0.0
example_input_batch, example_target_batch = next(iter(dataset))
example_input_batch.shape, example_target_batch.shape
# We provide positional information about the data to the model,
# otherwise each sentence will be treated as Bag of Words
def get_angles(pos, i, d_model):
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
return pos * angle_rates
def positional_encoding(position, d_model):
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model)
# apply sin to even indices in the array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# apply cos to odd indices in the array; 2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
# mask all elements are that not words (padding) so that it is not treated as input
def create_padding_mask(seq):
seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
# add extra dimensions to add the padding
# to the attention logits.
return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len)
def create_look_ahead_mask(size):
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
return mask
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
def scaled_dot_product_attention(q, k, v, mask):
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)
# scale matmul_qk
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
# add the mask to the scaled tensor.
if mask is not None:
scaled_attention_logits += (mask * -1e9)
# softmax is normalized on the last axis (seq_len_k) so that the scores
# add up to 1.
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k)
output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)
return output, attention_weights
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)
self.dense = tf.keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
"""Split the last dimension into (num_heads, depth).
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
"""
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, v, k, q, mask):
batch_size = tf.shape(q)[0]
q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k) # (batch_size, seq_len, d_model)
v = self.wv(v) # (batch_size, seq_len, d_model)
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
scaled_attention, attention_weights = scaled_dot_product_attention(
q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth)
concat_attention = tf.reshape(scaled_attention,
(batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model)
output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
return output, attention_weights
def point_wise_feed_forward_network(d_model, dff):
return tf.keras.Sequential([
tf.keras.layers.Dense(dff, activation='relu'), # (batch_size, seq_len, dff)
tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model)
])
class EncoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(EncoderLayer, self).__init__()
self.mha = MultiHeadAttention(d_model, num_heads)
self.ffn = point_wise_feed_forward_network(d_model, dff)
# normalize data per feature instead of batch
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
def call(self, x, training, mask):
# Multi-head attention layer
attn_output, _ = self.mha(x, x, x, mask)
attn_output = self.dropout1(attn_output, training=training)
# add residual connection to avoid vanishing gradient problem
out1 = self.layernorm1(x + attn_output)
# Feedforward layer
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
# add residual connection to avoid vanishing gradient problem
out2 = self.layernorm2(out1 + ffn_output)
return out2
class Encoder(tf.keras.layers.Layer):
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
maximum_position_encoding, rate=0.1):
super(Encoder, self).__init__()
self.d_model = d_model
self.num_layers = num_layers
self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
self.pos_encoding = positional_encoding(maximum_position_encoding,
self.d_model)
# Create encoder layers (count: num_layers)
self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate)
for _ in range(num_layers)]
self.dropout = tf.keras.layers.Dropout(rate)
def call(self, x, training, mask):
seq_len = tf.shape(x)[1]
# adding embedding and position encoding.
x = self.embedding(x)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.pos_encoding[:, :seq_len, :]
x = self.dropout(x, training=training)
for i in range(self.num_layers):
x = self.enc_layers[i](x, training, mask)
return x
class DecoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(DecoderLayer, self).__init__()
self.mha1 = MultiHeadAttention(d_model, num_heads)
self.mha2 = MultiHeadAttention(d_model, num_heads)
self.ffn = point_wise_feed_forward_network(d_model, dff)
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
self.dropout3 = tf.keras.layers.Dropout(rate)
def call(self, x, enc_output, training,
look_ahead_mask, padding_mask):
# Masked multihead attention layer (padding + look-ahead)
attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask)
attn1 = self.dropout1(attn1, training=training)
# again add residual connection
out1 = self.layernorm1(attn1 + x)
# Masked multihead attention layer (only padding)
# with input from encoder as Key and Value, and input from previous layer as Query
attn2, attn_weights_block2 = self.mha2(
enc_output, enc_output, out1, padding_mask)
attn2 = self.dropout2(attn2, training=training)
# again add residual connection
out2 = self.layernorm2(attn2 + out1)
# Feedforward layer
ffn_output = self.ffn(out2)
ffn_output = self.dropout3(ffn_output, training=training)
# again add residual connection
out3 = self.layernorm3(ffn_output + out2)
return out3, attn_weights_block1, attn_weights_block2
class Decoder(tf.keras.layers.Layer):
def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size,
maximum_position_encoding, rate=0.1):
super(Decoder, self).__init__()
self.d_model = d_model
self.num_layers = num_layers
self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model)
self.pos_encoding = positional_encoding(maximum_position_encoding, d_model)
# Create decoder layers (count: num_layers)
self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate)
for _ in range(num_layers)]
self.dropout = tf.keras.layers.Dropout(rate)
def call(self, x, enc_output, training,
look_ahead_mask, padding_mask):
seq_len = tf.shape(x)[1]
attention_weights = {}
x = self.embedding(x) # (batch_size, target_seq_len, d_model)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.pos_encoding[:,:seq_len,:]
x = self.dropout(x, training=training)
for i in range(self.num_layers):
x, block1, block2 = self.dec_layers[i](x, enc_output, training,
look_ahead_mask, padding_mask)
# store attenion weights, they can be used to visualize while translating
attention_weights['decoder_layer{}_block1'.format(i+1)] = block1
attention_weights['decoder_layer{}_block2'.format(i+1)] = block2
return x, attention_weights
class Transformer(tf.keras.Model):
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
target_vocab_size, pe_input, pe_target, rate=0.1):
super(Transformer, self).__init__()
self.encoder = Encoder(num_layers, d_model, num_heads, dff,
input_vocab_size, pe_input, rate)
self.decoder = Decoder(num_layers, d_model, num_heads, dff,
target_vocab_size, pe_target, rate)
self.final_layer = tf.keras.layers.Dense(target_vocab_size)
def call(self, inp, tar, training, enc_padding_mask,
look_ahead_mask, dec_padding_mask):
# Pass the input to the encoder
enc_output = self.encoder(inp, training, enc_padding_mask)
# Pass the encoder output to the decoder
dec_output, attention_weights = self.decoder(
tar, enc_output, training, look_ahead_mask, dec_padding_mask)
# Pass the decoder output to the last linear layer
final_output = self.final_layer(dec_output)
return final_output, attention_weights
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model, warmup_steps=4000):
super(CustomSchedule, self).__init__()
self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32)
self.warmup_steps = warmup_steps
def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
learning_rate = CustomSchedule(d_model)
# Adam optimizer with a custom learning rate
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98,
epsilon=1e-9)
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction='none')
def loss_function(real, pred):
# Apply a mask to paddings (0)
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
return tf.reduce_mean(loss_)
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
name='train_accuracy')
transformer = Transformer(num_layers, d_model, num_heads, dff,
input_vocab_size, target_vocab_size,
pe_input=input_vocab_size,
pe_target=target_vocab_size,
rate=dropout_rate)
def create_masks(inp, tar):
# Encoder padding mask
enc_padding_mask = create_padding_mask(inp)
# Decoder padding mask
dec_padding_mask = create_padding_mask(inp)
# Look ahead mask (for hiding the rest of the sequence in the 1st decoder attention layer)
look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
dec_target_padding_mask = create_padding_mask(tar)
combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)
return enc_padding_mask, combined_mask, dec_padding_mask
# drive_root = '/gdrive/My Drive/'
drive_root = './'
checkpoint_dir = os.path.join(drive_root, "checkpoints")
checkpoint_dir = os.path.join(checkpoint_dir, "training_checkpoints/moops_transfomer")
print("Checkpoints directory is", checkpoint_dir)
if os.path.exists(checkpoint_dir):
print("Checkpoints folder already exists")
else:
print("Creating a checkpoints directory")
os.makedirs(checkpoint_dir)
checkpoint = tf.train.Checkpoint(transformer=transformer,
optimizer=optimizer)
ckpt_manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=5)
latest = ckpt_manager.latest_checkpoint
latest
if latest:
epoch_num = int(latest.split('/')[-1].split('-')[-1])
checkpoint.restore(latest)
print ('Latest checkpoint restored!!')
else:
epoch_num = 0
epoch_num
# EPOCHS = 17
# def train_step(inp, tar):
# tar_inp = tar[:, :-1]
# tar_real = tar[:, 1:]
# enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)
# with tf.GradientTape() as tape:
# predictions, _ = transformer(inp, tar_inp,
# True,
# enc_padding_mask,
# combined_mask,
# dec_padding_mask)
# loss = loss_function(tar_real, predictions)
# gradients = tape.gradient(loss, transformer.trainable_variables)
# optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
# train_loss(loss)
# train_accuracy(tar_real, predictions)
# for epoch in range(epoch_num, EPOCHS):
# start = time.time()
# train_loss.reset_states()
# train_accuracy.reset_states()
# # inp -> question, tar -> equation
# for (batch, (inp, tar)) in enumerate(dataset):
# train_step(inp, tar)
# if batch % 50 == 0:
# print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format(
# epoch + 1, batch, train_loss.result(), train_accuracy.result()))
# ckpt_save_path = ckpt_manager.save()
# print ('Saving checkpoint for epoch {} at {}'.format(epoch+1,
# ckpt_save_path))
# print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1,
# train_loss.result(),
# train_accuracy.result()))
# print ('Time taken for 1 epoch: {} secs\n'.format(time.time() - start))
def evaluate(inp_sentence):
start_token = [len(inp_lang_tokenizer.word_index)+1]
end_token = [len(inp_lang_tokenizer.word_index)+2]
# inp sentence is the word problem, hence adding the start and end token
inp_sentence = start_token + [inp_lang_tokenizer.word_index.get(i, inp_lang_tokenizer.word_index['john']) for i in preprocess_input(inp_sentence).split(' ')] + end_token
encoder_input = tf.expand_dims(inp_sentence, 0)
# start with equation's start token
decoder_input = [old_len+1]
output = tf.expand_dims(decoder_input, 0)
for i in range(MAX_LENGTH):
enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
encoder_input, output)
predictions, attention_weights = transformer(encoder_input,
output,
False,
enc_padding_mask,
combined_mask,
dec_padding_mask)
# select the last word from the seq_len dimension
predictions = predictions[: ,-1:, :]
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
# return the result if the predicted_id is equal to the end token
if predicted_id == old_len+2:
return tf.squeeze(output, axis=0), attention_weights
# concatentate the predicted_id to the output which is given to the decoder
# as its input.
output = tf.concat([output, predicted_id], axis=-1)
return tf.squeeze(output, axis=0), attention_weights
# def plot_attention_weights(attention, sentence, result, layer):
# fig = plt.figure(figsize=(16, 8))
# sentence = preprocess_input(sentence)
# attention = tf.squeeze(attention[layer], axis=0)
# for head in range(attention.shape[0]):
# ax = fig.add_subplot(2, 4, head+1)
# # plot the attention weights
# ax.matshow(attention[head][:-1, :], cmap='viridis')
# fontdict = {'fontsize': 10}
# ax.set_xticks(range(len(sentence.split(' '))+2))
# ax.set_yticks(range(len([targ_lang_tokenizer.index_word[i] for i in list(result.numpy())
# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]])+3))
# ax.set_ylim(len([targ_lang_tokenizer.index_word[i] for i in list(result.numpy())
# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]]), -0.5)
# ax.set_xticklabels(
# ['<start>']+sentence.split(' ')+['<end>'],
# fontdict=fontdict, rotation=90)
# ax.set_yticklabels([targ_lang_tokenizer.index_word[i] for i in list(result.numpy())
# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]],
# fontdict=fontdict)
# ax.set_xlabel('Head {}'.format(head+1))
# plt.tight_layout()
# plt.show()
MAX_LENGTH = 40
def translate(sentence, plot=''):
result, attention_weights = evaluate(sentence)
# use the result tokens to convert prediction into a list of characters
# (not inclusing padding, start and end tokens)
predicted_sentence = [targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) if (i < len(targ_lang_tokenizer.word_index) and i not in [0,46,47])]
# print('Input: {}'.format(sentence))
return ''.join(predicted_sentence)
if plot:
plot_attention_weights(attention_weights, sentence, result, plot)
# def evaluate_results(inp_sentence):
# start_token = [len(inp_lang_tokenizer.word_index)+1]
# end_token = [len(inp_lang_tokenizer.word_index)+2]
# # inp sentence is the word problem, hence adding the start and end token
# inp_sentence = start_token + list(inp_sentence.numpy()[0]) + end_token
# encoder_input = tf.expand_dims(inp_sentence, 0)
# decoder_input = [old_len+1]
# output = tf.expand_dims(decoder_input, 0)
# for i in range(MAX_LENGTH):
# enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
# encoder_input, output)
# # predictions.shape == (batch_size, seq_len, vocab_size)
# predictions, attention_weights = transformer(encoder_input,
# output,
# False,
# enc_padding_mask,
# combined_mask,
# dec_padding_mask)
# # select the last word from the seq_len dimension
# predictions = predictions[: ,-1:, :] # (batch_size, 1, vocab_size)
# predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
# # return the result if the predicted_id is equal to the end token
# if predicted_id == old_len+2:
# return tf.squeeze(output, axis=0), attention_weights
# # concatentate the predicted_id to the output which is given to the decoder
# # as its input.
# output = tf.concat([output, predicted_id], axis=-1)
# return tf.squeeze(output, axis=0), attention_weights
# dataset_val = tf.data.Dataset.from_tensor_slices((input_tensor_val, target_tensor_val)).shuffle(BUFFER_SIZE)
# dataset_val = dataset_val.batch(1, drop_remainder=True)
# y_true = []
# y_pred = []
# acc_cnt = 0
# a = 0
# for (inp_val_batch, target_val_batch) in iter(dataset_val):
# a += 1
# if a % 100 == 0:
# print(a)
# print("Accuracy count: ",acc_cnt)
# print('------------------')
# target_sentence = ''
# for i in target_val_batch.numpy()[0]:
# if i not in [0,old_len+1,old_len+2]:
# target_sentence += (targ_lang_tokenizer.index_word[i] + ' ')
# y_true.append([target_sentence.split(' ')[:-1]])
# result, _ = evaluate_results(inp_val_batch)
# predicted_sentence = [targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) if (i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2])]
# y_pred.append(predicted_sentence)
# if target_sentence.split(' ')[:-1] == predicted_sentence:
# acc_cnt += 1
# len(y_true), len(y_pred)
# print('Corpus BLEU score of the model: ', corpus_bleu(y_true, y_pred))
# print('Accuracy of the model: ', acc_cnt/len(input_tensor_val))
check_str = ' '.join([inp_lang_tokenizer.index_word[i] for i in input_tensor_val[242] if i not in [0,
len(inp_lang_tokenizer.word_index)+1,
len(inp_lang_tokenizer.word_index)+2]])
check_str
translate(check_str)
#'victor had some car . john took 3 0 from him . now victor has 6 8 car . how many car victor had originally ?'
translate('Nafis had 31 raspberry . He slice each raspberry into 19 slices . How many raspberry slices did Denise make?')
interface = gr.Interface(
fn = translate,
inputs = gr.inputs.Textbox(lines = 2),
outputs = 'text',
examples = [
['Rachel bought two coloring books. One had 23 pictures and the other had 32. After one week she had colored 19 of the pictures. How many pictures does she still have to color?'],
['Denise had 31 raspberries. He slices each raspberry into 19 slices. How many raspberry slices did Denise make?'],
['A painter needed to paint 12 rooms in a building. Each room takes 7 hours to paint. If he already painted 5 rooms, how much longer will he take to paint the rest?'],
['Jerry had 135 pens. John took 19 pens from him. How many pens Jerry have left?'],
['Donald had some apples. Hillary took 20 apples from him. Now Donald has 100 apples. How many apples Donald had before?']
],
title = 'Mathbot',
description = 'Enter a simple math word problem and our AI will try to predict an expression to solve it. Mathbot occasionally makes mistakes. Feel free to press "flag" if you encounter such a scenario.',
)
interface.launch() |