File size: 2,050 Bytes
bd2cf7b
 
 
 
 
 
 
8421d14
9359dde
 
bd2cf7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8421d14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2cf7b
8421d14
 
bd2cf7b
 
 
 
8421d14
 
 
bd2cf7b
8421d14
 
 
 
 
 
 
ea780f0
8421d14
 
 
 
 
 
 
9359dde
 
 
 
 
 
 
 
 
bd2cf7b
9359dde
 
8421d14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import streamlit as st
import pickle
import os
import torch
from tqdm.auto import tqdm
from langchain.text_splitter import RecursiveCharacterTextSplitter


# from langchain.vectorstores import Chroma
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceInstructEmbeddings


from langchain import HuggingFacePipeline
from langchain.chains import RetrievalQA



st.set_page_config(
    page_title = 'aitGPT',
    page_icon = '✅')


st.markdown("# Hello")


@st.cache_data
def load_scraped_web_info():
    with open("/Users/carlosito/Library/CloudStorage/OneDrive-Personal/AIT material/99-AIT-thesis/aitGPT/ait-web-document", "rb") as fp:
        ait_web_documents = pickle.load(fp)
        
        
    text_splitter = RecursiveCharacterTextSplitter(
        # Set a really small chunk size, just to show.
        chunk_size = 500,
        chunk_overlap  = 100,
        length_function = len,
    )

    chunked_text = text_splitter.create_documents([doc for doc in tqdm(ait_web_documents)])


    st.markdown(f"Number of Documents: {len(ait_web_documents)}")
    st.markdown(f"Number of chunked texts: {len(chunked_text)}")




@st.cache_resource
def load_embedding_model():
    embedding_model = HuggingFaceInstructEmbeddings(model_name='hkunlp/instructor-base',
                                                model_kwargs = {'device': torch.device('cuda' if torch.cuda.is_available() else 'cpu')})
    return embedding_model

@st.cache_data
def load_faiss_index():
    vector_database = FAISS.load_local("faiss_index", embedding_model)
    return vector_database


#--------------



load_scraped_web_info()
embedding_model = load_embedding_model()
vector_database = load_faiss_index()
print("load done")




query_input = st.text_input(label= 'your question')
def retrieve_document(query_input):
    related_doc = vector_database.similarity_search(query_input)
    return related_doc

output = st.text_area(label = "Here is the relevant documents",
                      value = retrieve_document(query_input))