File size: 18,475 Bytes
2f044c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import collections
from typing import Any, Dict, Iterator, List, Optional

import torch
from transformers import AutoModel
from transformers.activations import ClippedGELUActivation, GELUActivation
from transformers.modeling_utils import PoolerEndLogits

from relik.reader.data.relik_reader_sample import RelikReaderSample

activation2functions = {
    "relu": torch.nn.ReLU(),
    "gelu": GELUActivation(),
    "gelu_10": ClippedGELUActivation(-10, 10),
}


class RelikReaderCoreModel(torch.nn.Module):
    def __init__(
        self,
        transformer_model: str,
        additional_special_symbols: int,
        num_layers: Optional[int] = None,
        activation: str = "gelu",
        linears_hidden_size: Optional[int] = 512,
        use_last_k_layers: int = 1,
        training: bool = False,
    ) -> None:
        super().__init__()

        # Transformer model declaration
        self.transformer_model_name = transformer_model
        self.transformer_model = (
            AutoModel.from_pretrained(transformer_model)
            if num_layers is None
            else AutoModel.from_pretrained(
                transformer_model, num_hidden_layers=num_layers
            )
        )
        # self.transformer_model.resize_token_embeddings(
        #     self.transformer_model.config.vocab_size + additional_special_symbols
        # )

        self.activation = activation
        self.linears_hidden_size = linears_hidden_size
        self.use_last_k_layers = use_last_k_layers

        # named entity detection layers
        self.ned_start_classifier = self._get_projection_layer(
            self.activation, last_hidden=2, layer_norm=False
        )
        self.ned_end_classifier = PoolerEndLogits(self.transformer_model.config)

        # END entity disambiguation layer
        self.ed_start_projector = self._get_projection_layer(self.activation)
        self.ed_end_projector = self._get_projection_layer(self.activation)

        self.training = training

        # criterion
        self.criterion = torch.nn.CrossEntropyLoss()

    def _get_projection_layer(
        self,
        activation: str,
        last_hidden: Optional[int] = None,
        input_hidden=None,
        layer_norm: bool = True,
    ) -> torch.nn.Sequential:
        head_components = [
            torch.nn.Dropout(0.1),
            torch.nn.Linear(
                self.transformer_model.config.hidden_size * self.use_last_k_layers
                if input_hidden is None
                else input_hidden,
                self.linears_hidden_size,
            ),
            activation2functions[activation],
            torch.nn.Dropout(0.1),
            torch.nn.Linear(
                self.linears_hidden_size,
                self.linears_hidden_size if last_hidden is None else last_hidden,
            ),
        ]

        if layer_norm:
            head_components.append(
                torch.nn.LayerNorm(
                    self.linears_hidden_size if last_hidden is None else last_hidden,
                    self.transformer_model.config.layer_norm_eps,
                )
            )

        return torch.nn.Sequential(*head_components)

    def _mask_logits(self, logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        mask = mask.unsqueeze(-1)
        if next(self.parameters()).dtype == torch.float16:
            logits = logits * (1 - mask) - 65500 * mask
        else:
            logits = logits * (1 - mask) - 1e30 * mask
        return logits

    def _get_model_features(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: Optional[torch.Tensor],
    ):
        model_input = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "output_hidden_states": self.use_last_k_layers > 1,
        }

        if token_type_ids is not None:
            model_input["token_type_ids"] = token_type_ids

        model_output = self.transformer_model(**model_input)

        if self.use_last_k_layers > 1:
            model_features = torch.cat(
                model_output[1][-self.use_last_k_layers :], dim=-1
            )
        else:
            model_features = model_output[0]

        return model_features

    def compute_ned_end_logits(
        self,
        start_predictions,
        start_labels,
        model_features,
        prediction_mask,
        batch_size,
    ) -> Optional[torch.Tensor]:
        # todo: maybe when constraining on the spans,
        #  we should not use a prediction_mask for the end tokens.
        #  at least we should not during training imo
        start_positions = start_labels if self.training else start_predictions
        start_positions_indices = (
            torch.arange(start_positions.size(1), device=start_positions.device)
            .unsqueeze(0)
            .expand(batch_size, -1)[start_positions > 0]
        ).to(start_positions.device)

        if len(start_positions_indices) > 0:
            expanded_features = torch.cat(
                [
                    model_features[i].unsqueeze(0).expand(x, -1, -1)
                    for i, x in enumerate(torch.sum(start_positions > 0, dim=-1))
                    if x > 0
                ],
                dim=0,
            ).to(start_positions_indices.device)

            expanded_prediction_mask = torch.cat(
                [
                    prediction_mask[i].unsqueeze(0).expand(x, -1)
                    for i, x in enumerate(torch.sum(start_positions > 0, dim=-1))
                    if x > 0
                ],
                dim=0,
            ).to(expanded_features.device)

            end_logits = self.ned_end_classifier(
                hidden_states=expanded_features,
                start_positions=start_positions_indices,
                p_mask=expanded_prediction_mask,
            )

            return end_logits

        return None

    def compute_classification_logits(
        self,
        model_features,
        special_symbols_mask,
        prediction_mask,
        batch_size,
        start_positions=None,
        end_positions=None,
    ) -> torch.Tensor:
        if start_positions is None or end_positions is None:
            start_positions = torch.zeros_like(prediction_mask)
            end_positions = torch.zeros_like(prediction_mask)

        model_start_features = self.ed_start_projector(model_features)
        model_end_features = self.ed_end_projector(model_features)
        model_end_features[start_positions > 0] = model_end_features[end_positions > 0]

        model_ed_features = torch.cat(
            [model_start_features, model_end_features], dim=-1
        )

        # computing ed features
        classes_representations = torch.sum(special_symbols_mask, dim=1)[0].item()
        special_symbols_representation = model_ed_features[special_symbols_mask].view(
            batch_size, classes_representations, -1
        )

        logits = torch.bmm(
            model_ed_features,
            torch.permute(special_symbols_representation, (0, 2, 1)),
        )

        logits = self._mask_logits(logits, prediction_mask)

        return logits

    def forward(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: Optional[torch.Tensor] = None,
        prediction_mask: Optional[torch.Tensor] = None,
        special_symbols_mask: Optional[torch.Tensor] = None,
        start_labels: Optional[torch.Tensor] = None,
        end_labels: Optional[torch.Tensor] = None,
        use_predefined_spans: bool = False,
        *args,
        **kwargs,
    ) -> Dict[str, Any]:
        batch_size, seq_len = input_ids.shape

        model_features = self._get_model_features(
            input_ids, attention_mask, token_type_ids
        )

        # named entity detection if required
        if use_predefined_spans:  # no need to compute spans
            ned_start_logits, ned_start_probabilities, ned_start_predictions = (
                None,
                None,
                torch.clone(start_labels)
                if start_labels is not None
                else torch.zeros_like(input_ids),
            )
            ned_end_logits, ned_end_probabilities, ned_end_predictions = (
                None,
                None,
                torch.clone(end_labels)
                if end_labels is not None
                else torch.zeros_like(input_ids),
            )

            ned_start_predictions[ned_start_predictions > 0] = 1
            ned_end_predictions[ned_end_predictions > 0] = 1

        else:  # compute spans
            # start boundary prediction
            ned_start_logits = self.ned_start_classifier(model_features)
            ned_start_logits = self._mask_logits(ned_start_logits, prediction_mask)
            ned_start_probabilities = torch.softmax(ned_start_logits, dim=-1)
            ned_start_predictions = ned_start_probabilities.argmax(dim=-1)

            # end boundary prediction
            ned_start_labels = (
                torch.zeros_like(start_labels) if start_labels is not None else None
            )

            if ned_start_labels is not None:
                ned_start_labels[start_labels == -100] = -100
                ned_start_labels[start_labels > 0] = 1

            ned_end_logits = self.compute_ned_end_logits(
                ned_start_predictions,
                ned_start_labels,
                model_features,
                prediction_mask,
                batch_size,
            )

            if ned_end_logits is not None:
                ned_end_probabilities = torch.softmax(ned_end_logits, dim=-1)
                ned_end_predictions = torch.argmax(ned_end_probabilities, dim=-1)
            else:
                ned_end_logits, ned_end_probabilities = None, None
                ned_end_predictions = ned_start_predictions.new_zeros(batch_size)

            # flattening end predictions
            #   (flattening can happen only if the
            #   end boundaries were not predicted using the gold labels)
            if not self.training:
                flattened_end_predictions = torch.clone(ned_start_predictions)
                flattened_end_predictions[flattened_end_predictions > 0] = 0

                batch_start_predictions = list()
                for elem_idx in range(batch_size):
                    batch_start_predictions.append(
                        torch.where(ned_start_predictions[elem_idx] > 0)[0].tolist()
                    )

                # check that the total number of start predictions
                # is equal to the end predictions
                total_start_predictions = sum(map(len, batch_start_predictions))
                total_end_predictions = len(ned_end_predictions)
                assert (
                    total_start_predictions == 0
                    or total_start_predictions == total_end_predictions
                ), (
                    f"Total number of start predictions = {total_start_predictions}. "
                    f"Total number of end predictions = {total_end_predictions}"
                )

                curr_end_pred_num = 0
                for elem_idx, bsp in enumerate(batch_start_predictions):
                    for sp in bsp:
                        ep = ned_end_predictions[curr_end_pred_num].item()
                        if ep < sp:
                            ep = sp

                        # if we already set this span throw it (no overlap)
                        if flattened_end_predictions[elem_idx, ep] == 1:
                            ned_start_predictions[elem_idx, sp] = 0
                        else:
                            flattened_end_predictions[elem_idx, ep] = 1

                        curr_end_pred_num += 1

                ned_end_predictions = flattened_end_predictions

        start_position, end_position = (
            (start_labels, end_labels)
            if self.training
            else (ned_start_predictions, ned_end_predictions)
        )

        # Entity disambiguation
        ed_logits = self.compute_classification_logits(
            model_features,
            special_symbols_mask,
            prediction_mask,
            batch_size,
            start_position,
            end_position,
        )
        ed_probabilities = torch.softmax(ed_logits, dim=-1)
        ed_predictions = torch.argmax(ed_probabilities, dim=-1)

        # output build
        output_dict = dict(
            batch_size=batch_size,
            ned_start_logits=ned_start_logits,
            ned_start_probabilities=ned_start_probabilities,
            ned_start_predictions=ned_start_predictions,
            ned_end_logits=ned_end_logits,
            ned_end_probabilities=ned_end_probabilities,
            ned_end_predictions=ned_end_predictions,
            ed_logits=ed_logits,
            ed_probabilities=ed_probabilities,
            ed_predictions=ed_predictions,
        )

        # compute loss if labels
        if start_labels is not None and end_labels is not None and self.training:
            # named entity detection loss

            # start
            if ned_start_logits is not None:
                ned_start_loss = self.criterion(
                    ned_start_logits.view(-1, ned_start_logits.shape[-1]),
                    ned_start_labels.view(-1),
                )
            else:
                ned_start_loss = 0

            # end
            if ned_end_logits is not None:
                ned_end_labels = torch.zeros_like(end_labels)
                ned_end_labels[end_labels == -100] = -100
                ned_end_labels[end_labels > 0] = 1

                ned_end_loss = self.criterion(
                    ned_end_logits,
                    (
                        torch.arange(
                            ned_end_labels.size(1), device=ned_end_labels.device
                        )
                        .unsqueeze(0)
                        .expand(batch_size, -1)[ned_end_labels > 0]
                    ).to(ned_end_labels.device),
                )

            else:
                ned_end_loss = 0

            # entity disambiguation loss
            start_labels[ned_start_labels != 1] = -100
            ed_labels = torch.clone(start_labels)
            ed_labels[end_labels > 0] = end_labels[end_labels > 0]
            ed_loss = self.criterion(
                ed_logits.view(-1, ed_logits.shape[-1]),
                ed_labels.view(-1),
            )

            output_dict["ned_start_loss"] = ned_start_loss
            output_dict["ned_end_loss"] = ned_end_loss
            output_dict["ed_loss"] = ed_loss

            output_dict["loss"] = ned_start_loss + ned_end_loss + ed_loss

        return output_dict

    def batch_predict(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: Optional[torch.Tensor] = None,
        prediction_mask: Optional[torch.Tensor] = None,
        special_symbols_mask: Optional[torch.Tensor] = None,
        sample: Optional[List[RelikReaderSample]] = None,
        top_k: int = 5,  # the amount of top-k most probable entities to predict
        *args,
        **kwargs,
    ) -> Iterator[RelikReaderSample]:
        forward_output = self.forward(
            input_ids,
            attention_mask,
            token_type_ids,
            prediction_mask,
            special_symbols_mask,
        )

        ned_start_predictions = forward_output["ned_start_predictions"].cpu().numpy()
        ned_end_predictions = forward_output["ned_end_predictions"].cpu().numpy()
        ed_predictions = forward_output["ed_predictions"].cpu().numpy()
        ed_probabilities = forward_output["ed_probabilities"].cpu().numpy()

        batch_predictable_candidates = kwargs["predictable_candidates"]
        patch_offset = kwargs["patch_offset"]
        for ts, ne_sp, ne_ep, edp, edpr, pred_cands, po in zip(
            sample,
            ned_start_predictions,
            ned_end_predictions,
            ed_predictions,
            ed_probabilities,
            batch_predictable_candidates,
            patch_offset,
        ):
            ne_start_indices = [ti for ti, c in enumerate(ne_sp[1:]) if c > 0]
            ne_end_indices = [ti for ti, c in enumerate(ne_ep[1:]) if c > 0]

            final_class2predicted_spans = collections.defaultdict(list)
            spans2predicted_probabilities = dict()
            for start_token_index, end_token_index in zip(
                ne_start_indices, ne_end_indices
            ):
                # predicted candidate
                token_class = edp[start_token_index + 1] - 1
                predicted_candidate_title = pred_cands[token_class]
                final_class2predicted_spans[predicted_candidate_title].append(
                    [start_token_index, end_token_index]
                )

                # candidates probabilities
                classes_probabilities = edpr[start_token_index + 1]
                classes_probabilities_best_indices = classes_probabilities.argsort()[
                    ::-1
                ]
                titles_2_probs = []
                top_k = (
                    min(
                        top_k,
                        len(classes_probabilities_best_indices),
                    )
                    if top_k != -1
                    else len(classes_probabilities_best_indices)
                )
                for i in range(top_k):
                    titles_2_probs.append(
                        (
                            pred_cands[classes_probabilities_best_indices[i] - 1],
                            classes_probabilities[
                                classes_probabilities_best_indices[i]
                            ].item(),
                        )
                    )
                spans2predicted_probabilities[
                    (start_token_index, end_token_index)
                ] = titles_2_probs

            if "patches" not in ts._d:
                ts._d["patches"] = dict()

            ts._d["patches"][po] = dict()
            sample_patch = ts._d["patches"][po]

            sample_patch["predicted_window_labels"] = final_class2predicted_spans
            sample_patch["span_title_probabilities"] = spans2predicted_probabilities

            # additional info
            sample_patch["predictable_candidates"] = pred_cands

            yield ts