File size: 23,737 Bytes
2f044c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import logging
import os
import platform
from dataclasses import dataclass
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Optional, Union

import torch
import torch.nn.functional as F
import transformers as tr
from torch.utils.data import DataLoader
from tqdm import tqdm

from relik.common.log import get_logger
from relik.common.torch_utils import (
    get_autocast_context,
)  # , # load_ort_optimized_hf_model
from relik.common.utils import is_package_available, to_config
from relik.retriever.common.model_inputs import ModelInputs
from relik.retriever.data.base.datasets import BaseDataset
from relik.retriever.data.labels import Labels
from relik.retriever.indexers.base import BaseDocumentIndex
from relik.retriever.indexers.document import Document
from relik.retriever.indexers.inmemory import InMemoryDocumentIndex
from relik.retriever.pytorch_modules import PRECISION_MAP, RetrievedSample
from relik.retriever.pytorch_modules.hf import GoldenRetrieverModel

# check if ORT is available
if is_package_available("onnxruntime"):
    from optimum.onnxruntime import ORTModel

logger = get_logger(__name__, level=logging.INFO)


@dataclass
class GoldenRetrieverOutput(tr.file_utils.ModelOutput):
    """Class for model's outputs."""

    logits: Optional[torch.FloatTensor] = None
    loss: Optional[torch.FloatTensor] = None
    question_encodings: Optional[torch.FloatTensor] = None
    passages_encodings: Optional[torch.FloatTensor] = None


class GoldenRetriever(torch.nn.Module):
    def __init__(
        self,
        question_encoder: Union[str, tr.PreTrainedModel],
        loss_type: Optional[torch.nn.Module] = None,
        passage_encoder: Optional[Union[str, tr.PreTrainedModel]] = None,
        document_index: Optional[Union[str, BaseDocumentIndex]] = None,
        question_tokenizer: Optional[Union[str, tr.PreTrainedTokenizer]] = None,
        passage_tokenizer: Optional[Union[str, tr.PreTrainedTokenizer]] = None,
        device: Optional[Union[str, torch.device]] = "cpu",
        precision: Optional[Union[str, int]] = None,
        index_precision: Optional[Union[str, int]] = None,
        index_device: Optional[Union[str, torch.device]] = None,
        *args,
        **kwargs,
    ):
        super().__init__()

        self.passage_encoder_is_question_encoder = False
        # question encoder model
        if isinstance(question_encoder, str):
            question_encoder = GoldenRetrieverModel.from_pretrained(
                question_encoder, **kwargs
            )
        self.question_encoder = question_encoder
        if passage_encoder is None:
            # if no passage encoder is provided,
            # share the weights of the question encoder
            passage_encoder = question_encoder
            # keep track of the fact that the passage encoder is the same as the question encoder
            self.passage_encoder_is_question_encoder = True
        if isinstance(passage_encoder, str):
            passage_encoder = GoldenRetrieverModel.from_pretrained(
                passage_encoder, **kwargs
            )
        # passage encoder model
        self.passage_encoder = passage_encoder

        # loss function
        self.loss_type = loss_type

        # indexer stuff
        index_device = index_device or device
        index_precision = index_precision or precision
        if document_index is None:
            # if no indexer is provided, create a new one
            document_index = InMemoryDocumentIndex(
                device=index_device, precision=index_precision, **kwargs
            )
        if isinstance(document_index, str):
            document_index = BaseDocumentIndex.from_pretrained(
                document_index, device=index_device, precision=index_precision, **kwargs
            )
        self.document_index = document_index

        # lazy load the tokenizer for inference
        self._question_tokenizer = question_tokenizer
        self._passage_tokenizer = passage_tokenizer

        # move the model to the device
        self.to(device or torch.device("cpu"))

        # set the precision
        self.precision = precision

    def forward(
        self,
        questions: Optional[Dict[str, torch.Tensor]] = None,
        passages: Optional[Dict[str, torch.Tensor]] = None,
        labels: Optional[torch.Tensor] = None,
        question_encodings: Optional[torch.Tensor] = None,
        passages_encodings: Optional[torch.Tensor] = None,
        passages_per_question: Optional[List[int]] = None,
        return_loss: bool = False,
        return_encodings: bool = False,
        *args,
        **kwargs,
    ) -> GoldenRetrieverOutput:
        """
        Forward pass of the model.

        Args:
            questions (`Dict[str, torch.Tensor]`):
                The questions to encode.
            passages (`Dict[str, torch.Tensor]`):
                The passages to encode.
            labels (`torch.Tensor`):
                The labels of the sentences.
            return_loss (`bool`):
                Whether to compute the predictions.
            question_encodings (`torch.Tensor`):
                The encodings of the questions.
            passages_encodings (`torch.Tensor`):
                The encodings of the passages.
            passages_per_question (`List[int]`):
                The number of passages per question.
            return_loss (`bool`):
                Whether to compute the loss.
            return_encodings (`bool`):
                Whether to return the encodings.

        Returns:
            obj:`torch.Tensor`: The outputs of the model.
        """
        if questions is None and question_encodings is None:
            raise ValueError(
                "Either `questions` or `question_encodings` must be provided"
            )
        if passages is None and passages_encodings is None:
            raise ValueError(
                "Either `passages` or `passages_encodings` must be provided"
            )

        if question_encodings is None:
            question_encodings = self.question_encoder(**questions).pooler_output
        if passages_encodings is None:
            passages_encodings = self.passage_encoder(**passages).pooler_output

        if passages_per_question is not None:
            # multiply each question encoding with a passages_per_question encodings
            concatenated_passages = torch.stack(
                torch.split(passages_encodings, passages_per_question)
            ).transpose(1, 2)
            if isinstance(self.loss_type, torch.nn.BCEWithLogitsLoss):
                # normalize the encodings for cosine similarity
                concatenated_passages = F.normalize(concatenated_passages, p=2, dim=2)
                question_encodings = F.normalize(question_encodings, p=2, dim=1)
            logits = torch.bmm(
                question_encodings.unsqueeze(1), concatenated_passages
            ).view(question_encodings.shape[0], -1)
        else:
            if isinstance(self.loss_type, torch.nn.BCEWithLogitsLoss):
                # normalize the encodings for cosine similarity
                question_encodings = F.normalize(question_encodings, p=2, dim=1)
                passages_encodings = F.normalize(passages_encodings, p=2, dim=1)

            logits = torch.matmul(question_encodings, passages_encodings.T)

        output = dict(logits=logits)

        if return_loss and labels is not None:
            if self.loss_type is None:
                raise ValueError(
                    "If `return_loss` is set to `True`, `loss_type` must be provided"
                )
            if isinstance(self.loss_type, torch.nn.NLLLoss):
                labels = labels.argmax(dim=1)
                logits = F.log_softmax(logits, dim=1)
                if len(question_encodings.size()) > 1:
                    logits = logits.view(question_encodings.size(0), -1)

            output["loss"] = self.loss_type(logits, labels)

        if return_encodings:
            output["question_encodings"] = question_encodings
            output["passages_encodings"] = passages_encodings

        return GoldenRetrieverOutput(**output)

    @torch.no_grad()
    @torch.inference_mode()
    def index(
        self,
        batch_size: int = 32,
        num_workers: int = 4,
        max_length: int | None = None,
        collate_fn: Optional[Callable] = None,
        force_reindex: bool = False,
        compute_on_cpu: bool = False,
        precision: Optional[Union[str, int]] = None,
        *args,
        **kwargs,
    ):
        """
        Index the passages for later retrieval.

        Args:
            batch_size (`int`):
                The batch size to use for the indexing.
            num_workers (`int`):
                The number of workers to use for the indexing.
            max_length (`int | None`):
                The maximum length of the passages.
            collate_fn (`Callable`):
                The collate function to use for the indexing.
            force_reindex (`bool`):
                Whether to force reindexing even if the passages are already indexed.
            compute_on_cpu (`bool`):
                Whether to move the index to the CPU after the indexing.
            precision (`Optional[Union[str, int]]`):
                The precision to use for the model.
        """
        if self.document_index is None:
            raise ValueError(
                "The retriever must be initialized with an indexer to index "
                "the passages within the retriever."
            )
        # TODO: add kwargs
        return self.document_index.index(
            retriever=self,
            batch_size=batch_size,
            num_workers=num_workers,
            max_length=max_length,
            collate_fn=collate_fn,
            encoder_precision=precision or self.precision,
            compute_on_cpu=compute_on_cpu,
            force_reindex=force_reindex,
            *args,
            **kwargs,
        )

    @torch.no_grad()
    @torch.inference_mode()
    def retrieve(
        self,
        text: Optional[Union[str, List[str]]] = None,
        text_pair: Optional[Union[str, List[str]]] = None,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        k: int | None = None,
        max_length: int | None = None,
        precision: Optional[Union[str, int]] = None,
        collate_fn: Optional[Callable] = None,
        batch_size: int | None = None,
        num_workers: int = 4,
        progress_bar: bool = False,
        **kwargs,
    ) -> List[List[RetrievedSample]]:
        """
        Retrieve the passages for the questions.

        Args:
            text (`Optional[Union[str, List[str]]]`):
                The questions to retrieve the passages for.
            text_pair (`Optional[Union[str, List[str]]]`):
                The questions to retrieve the passages for.
            input_ids (`torch.Tensor`):
                The input ids of the questions.
            attention_mask (`torch.Tensor`):
                The attention mask of the questions.
            token_type_ids (`torch.Tensor`):
                The token type ids of the questions.
            k (`int`):
                The number of top passages to retrieve.
            max_length (`int | None`):
                The maximum length of the questions.
            precision (`Optional[Union[str, int]]`):
                The precision to use for the model.
            collate_fn (`Callable`):
                The collate function to use for the retrieval.
            batch_size (`int`):
                The batch size to use for the retrieval.
            num_workers (`int`):
                The number of workers to use for the retrieval.
            progress_bar (`bool`):
                Whether to show a progress bar.

        Returns:
            `List[List[RetrievedSample]]`: The retrieved passages and their indices.
        """
        if self.document_index is None:
            raise ValueError(
                "The indexer must be indexed before it can be used within the retriever."
            )
        if text is None and input_ids is None:
            raise ValueError(
                "Either `text` or `input_ids` must be provided to retrieve the passages."
            )

        if text is not None:
            if isinstance(text, str):
                text = [text]
            if text_pair is not None:
                if isinstance(text_pair, str):
                    text_pair = [text_pair]
            else:
                text_pair = [None] * len(text)

            if collate_fn is None:
                tokenizer = self.question_tokenizer
                collate_fn = partial(
                    self.default_collate_fn, max_length=max_length, tokenizer=tokenizer
                )

            dataloader = DataLoader(
                BaseDataset(name="questions", data=list(zip(text, text_pair))),
                batch_size=batch_size,
                shuffle=False,
                num_workers=num_workers,
                pin_memory=False,
                collate_fn=collate_fn,
            )
        else:
            model_inputs = ModelInputs(dict(input_ids=input_ids))
            if attention_mask is not None:
                model_inputs["attention_mask"] = attention_mask
            if token_type_ids is not None:
                model_inputs["token_type_ids"] = token_type_ids

            dataloader = [model_inputs]

        if progress_bar:
            dataloader = tqdm(dataloader, desc="Retrieving passages")

        retrieved = []
        try:
            with get_autocast_context(self.device, precision):
                for batch in dataloader:
                    batch = batch.to(self.device)
                    question_encodings = self.question_encoder(**batch).pooler_output
                    retrieved += self.document_index.search(question_encodings, k)
        except AttributeError as e:
            # apparently num_workers > 0 gives some issue on MacOS as of now
            if "mac" in platform.platform().lower():
                raise ValueError(
                    "DataLoader with num_workers > 0 is not supported on MacOS. "
                    "Please set num_workers=0 or try to run on a different machine."
                ) from e
            else:
                raise e

        if progress_bar:
            dataloader.close()

        return retrieved

    @staticmethod
    def default_collate_fn(
        x: tuple, tokenizer: tr.PreTrainedTokenizer, max_length: int | None = None
    ) -> ModelInputs:
        # get text and text pair
        # TODO: check if only retriever is used
        _text = [sample[0] for sample in x]
        _text_pair = [sample[1] for sample in x]
        _text_pair = None if any([t is None for t in _text_pair]) else _text_pair
        return ModelInputs(
            tokenizer(
                _text,
                text_pair=_text_pair,
                padding=True,
                return_tensors="pt",
                truncation=True,
                max_length=max_length or tokenizer.model_max_length,
            )
        )

    def get_document_from_index(self, index: int) -> Document:
        """
        Get the document from its ID.

        Args:
            id (`int`):
                The ID of the document.

        Returns:
            `str`: The document.
        """
        if self.document_index is None:
            raise ValueError(
                "The passages must be indexed before they can be retrieved."
            )
        return self.document_index.get_document_from_index(index)

    def get_document_from_passage(self, passage: str) -> Document:
        """
        Get the document from its text.

        Args:
            passage (`str`):
                The passage of the document.

        Returns:
            `str`: The document.
        """
        if self.document_index is None:
            raise ValueError(
                "The passages must be indexed before they can be retrieved."
            )
        return self.document_index.get_document_from_passage(passage)

    def get_index_from_passage(self, passage: str) -> int:
        """
        Get the index of the passage.

        Args:
            passage (`str`):
                The passage to get the index for.

        Returns:
            `int`: The index of the passage.
        """
        if self.document_index is None:
            raise ValueError(
                "The passages must be indexed before they can be retrieved."
            )
        return self.document_index.get_index_from_passage(passage)

    def get_passage_from_index(self, index: int) -> str:
        """
        Get the passage from the index.

        Args:
            index (`int`):
                The index of the passage.

        Returns:
            `str`: The passage.
        """
        if self.document_index is None:
            raise ValueError(
                "The passages must be indexed before they can be retrieved."
            )
        return self.document_index.get_passage_from_index(index)

    def get_vector_from_index(self, index: int) -> torch.Tensor:
        """
        Get the passage vector from the index.

        Args:
            index (`int`):
                The index of the passage.

        Returns:
            `torch.Tensor`: The passage vector.
        """
        if self.document_index is None:
            raise ValueError(
                "The passages must be indexed before they can be retrieved."
            )
        return self.document_index.get_embeddings_from_index(index)

    def get_vector_from_passage(self, passage: str) -> torch.Tensor:
        """
        Get the passage vector from the passage.

        Args:
            passage (`str`):
                The passage.

        Returns:
            `torch.Tensor`: The passage vector.
        """
        if self.document_index is None:
            raise ValueError(
                "The passages must be indexed before they can be retrieved."
            )
        return self.document_index.get_embeddings_from_passage(passage)

    @property
    def passage_embeddings(self) -> torch.Tensor:
        """
        The passage embeddings.
        """
        return self._passage_embeddings

    @property
    def passage_index(self) -> Labels:
        """
        The passage index.
        """
        return self._passage_index

    @property
    def device(self) -> torch.device:
        """
        The device of the model.
        """
        return next(self.parameters()).device

    @property
    def question_tokenizer(self) -> tr.PreTrainedTokenizer:
        """
        The question tokenizer.
        """
        if self._question_tokenizer:
            return self._question_tokenizer

        if (
            self.question_encoder.config.name_or_path
            == self.question_encoder.config.name_or_path
        ):
            if not self._question_tokenizer:
                self._question_tokenizer = tr.AutoTokenizer.from_pretrained(
                    self.question_encoder.config.name_or_path
                )
            self._passage_tokenizer = self._question_tokenizer
            return self._question_tokenizer

        if not self._question_tokenizer:
            self._question_tokenizer = tr.AutoTokenizer.from_pretrained(
                self.question_encoder.config.name_or_path
            )
        return self._question_tokenizer

    @property
    def passage_tokenizer(self) -> tr.PreTrainedTokenizer:
        """
        The passage tokenizer.
        """
        if self._passage_tokenizer:
            return self._passage_tokenizer

        if (
            self.question_encoder.config.name_or_path
            == self.passage_encoder.config.name_or_path
        ):
            if not self._question_tokenizer:
                self._question_tokenizer = tr.AutoTokenizer.from_pretrained(
                    self.question_encoder.config.name_or_path
                )
            self._passage_tokenizer = self._question_tokenizer
            return self._passage_tokenizer

        if not self._passage_tokenizer:
            self._passage_tokenizer = tr.AutoTokenizer.from_pretrained(
                self.passage_encoder.config.name_or_path
            )
        return self._passage_tokenizer

    def save_pretrained(
        self,
        output_dir: Union[str, os.PathLike],
        question_encoder_name: str | None = None,
        passage_encoder_name: str | None = None,
        document_index_name: str | None = None,
        push_to_hub: bool = False,
        **kwargs,
    ):
        """
        Save the retriever to a directory.

        Args:
            output_dir (`str`):
                The directory to save the retriever to.
            question_encoder_name (`str | None`):
                The name of the question encoder.
            passage_encoder_name (`str | None`):
                The name of the passage encoder.
            document_index_name (`str | None`):
                The name of the document index.
            push_to_hub (`bool`):
                Whether to push the model to the hub.
        """

        # create the output directory
        output_dir = Path(output_dir)
        output_dir.mkdir(parents=True, exist_ok=True)

        logger.info(f"Saving retriever to {output_dir}")

        question_encoder_name = question_encoder_name or "question_encoder"
        passage_encoder_name = passage_encoder_name or "passage_encoder"
        document_index_name = document_index_name or "document_index"

        logger.info(
            f"Saving question encoder state to {output_dir / question_encoder_name}"
        )
        # self.question_encoder.config._name_or_path = question_encoder_name
        self.question_encoder.register_for_auto_class()
        self.question_encoder.save_pretrained(
            str(output_dir / question_encoder_name), push_to_hub=push_to_hub, **kwargs
        )
        self.question_tokenizer.save_pretrained(
            str(output_dir / question_encoder_name), push_to_hub=push_to_hub, **kwargs
        )
        if not self.passage_encoder_is_question_encoder:
            logger.info(
                f"Saving passage encoder state to {output_dir / passage_encoder_name}"
            )
            # self.passage_encoder.config._name_or_path = passage_encoder_name
            self.passage_encoder.register_for_auto_class()
            self.passage_encoder.save_pretrained(
                str(output_dir / passage_encoder_name),
                push_to_hub=push_to_hub,
                **kwargs,
            )
            self.passage_tokenizer.save_pretrained(
                output_dir / passage_encoder_name, push_to_hub=push_to_hub, **kwargs
            )

        if self.document_index is not None:
            # save the indexer
            self.document_index.save_pretrained(
                str(output_dir / document_index_name), push_to_hub=push_to_hub, **kwargs
            )

        logger.info("Saving retriever to disk done.")

    @classmethod
    def to_config(cls, *args, **kwargs):
        config = {
            "_target_": f"{cls.__class__.__module__}.{cls.__class__.__name__}",
            "question_encoder": cls.question_encoder.config.name_or_path,
            "passage_encoder": cls.passage_encoder.config.name_or_path
            if not cls.passage_encoder_is_question_encoder
            else None,
            "document_index": to_config(cls.document_index),
        }
        return config