File size: 4,030 Bytes
2f044c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import math

from torch.utils.data.sampler import BatchSampler, Sampler, SubsetRandomSampler


def identity(x):
    return x


class SortedSampler(Sampler):
    """
    Samples elements sequentially, always in the same order.

    Args:
        data (`obj`: `Iterable`):
            Iterable data.
        sort_key (`obj`: `Callable`):
            Specifies a function of one argument that is used to
            extract a numerical comparison key from each list element.

        Example:
            >>> list(SortedSampler(range(10), sort_key=lambda i: -i))
                [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

    """

    def __init__(self, data, sort_key=identity):
        super().__init__(data)
        self.data = data
        self.sort_key = sort_key
        zip_ = [(i, self.sort_key(row)) for i, row in enumerate(self.data)]
        zip_ = sorted(zip_, key=lambda r: r[1])
        self.sorted_indexes = [item[0] for item in zip_]

    def __iter__(self):
        return iter(self.sorted_indexes)

    def __len__(self):
        return len(self.data)


class BucketBatchSampler(BatchSampler):
    """
    `BucketBatchSampler` toggles between `sampler` batches and sorted batches.
    Typically, the `sampler` will be a `RandomSampler` allowing the user to toggle between
    random batches and sorted batches. A larger `bucket_size_multiplier` is more sorted and vice
    versa.
    Background:
        ``BucketBatchSampler`` is similar to a ``BucketIterator`` found in popular libraries like
        ``AllenNLP`` and ``torchtext``. A ``BucketIterator`` pools together examples with a similar
        size length to reduce the padding required for each batch while maintaining some noise
        through bucketing.
        **AllenNLP Implementation:**
        https://github.com/allenai/allennlp/blob/master/allennlp/data/iterators/bucket_iterator.py
        **torchtext Implementation:**
        https://github.com/pytorch/text/blob/master/torchtext/data/iterator.py#L225

    Args:
        sampler (`obj`: `torch.data.utils.sampler.Sampler):
        batch_size (`int`):
            Size of mini-batch.
        drop_last (`bool`, optional, defaults to `False`):
            If `True` the sampler will drop the last batch if its size would be less than `batch_size`.
        sort_key (`obj`: `Callable`, optional, defaults to `identity`):
            Callable to specify a comparison key for sorting.
        bucket_size_multiplier (`int`, optional, defaults to `100`):
            Buckets are of size `batch_size * bucket_size_multiplier`.
    Example:
        >>> from torchnlp.random import set_seed
        >>> set_seed(123)
        >>>
        >>> from torch.utils.data.sampler import SequentialSampler
        >>> sampler = SequentialSampler(list(range(10)))
        >>> list(BucketBatchSampler(sampler, batch_size=3, drop_last=False))
        [[6, 7, 8], [0, 1, 2], [3, 4, 5], [9]]
        >>> list(BucketBatchSampler(sampler, batch_size=3, drop_last=True))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]]

    """

    def __init__(
        self,
        sampler,
        batch_size,
        drop_last: bool = False,
        sort_key=identity,
        bucket_size_multiplier=100,
    ):
        super().__init__(sampler, batch_size, drop_last)
        self.sort_key = sort_key
        _bucket_size = batch_size * bucket_size_multiplier
        if hasattr(sampler, "__len__"):
            _bucket_size = min(_bucket_size, len(sampler))
        self.bucket_sampler = BatchSampler(sampler, _bucket_size, False)

    def __iter__(self):
        for bucket in self.bucket_sampler:
            sorted_sampler = SortedSampler(bucket, self.sort_key)
            for batch in SubsetRandomSampler(
                list(BatchSampler(sorted_sampler, self.batch_size, self.drop_last))
            ):
                yield [bucket[i] for i in batch]

    def __len__(self):
        if self.drop_last:
            return len(self.sampler) // self.batch_size
        else:
            return math.ceil(len(self.sampler) / self.batch_size)