Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	File size: 2,989 Bytes
			
			| ffead1e | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | <!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Models
Diffusers contains pretrained models for popular algorithms and modules for creating the next set of diffusion models.
The primary function of these models is to denoise an input sample, by modeling the distribution $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$.
The models are built on the base class ['ModelMixin'] that is a `torch.nn.module` with basic functionality for saving and loading models both locally and from the HuggingFace hub.
## ModelMixin
[[autodoc]] ModelMixin
## UNet2DOutput
[[autodoc]] models.unet_2d.UNet2DOutput
## UNet2DModel
[[autodoc]] UNet2DModel
## UNet1DOutput
[[autodoc]] models.unet_1d.UNet1DOutput
## UNet1DModel
[[autodoc]] UNet1DModel
## UNet2DConditionOutput
[[autodoc]] models.unet_2d_condition.UNet2DConditionOutput
## UNet2DConditionModel
[[autodoc]] UNet2DConditionModel
## UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput
## UNet3DConditionModel
[[autodoc]] UNet3DConditionModel
## DecoderOutput
[[autodoc]] models.vae.DecoderOutput
## VQEncoderOutput
[[autodoc]] models.vq_model.VQEncoderOutput
## VQModel
[[autodoc]] VQModel
## AutoencoderKLOutput
[[autodoc]] models.autoencoder_kl.AutoencoderKLOutput
## AutoencoderKL
[[autodoc]] AutoencoderKL
## Transformer2DModel
[[autodoc]] Transformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.transformer_2d.Transformer2DModelOutput
## TransformerTemporalModel
[[autodoc]] models.transformer_temporal.TransformerTemporalModel
## Transformer2DModelOutput
[[autodoc]] models.transformer_temporal.TransformerTemporalModelOutput
## PriorTransformer
[[autodoc]] models.prior_transformer.PriorTransformer
## PriorTransformerOutput
[[autodoc]] models.prior_transformer.PriorTransformerOutput
## ControlNetOutput
[[autodoc]] models.controlnet.ControlNetOutput
## ControlNetModel
[[autodoc]] ControlNetModel
## FlaxModelMixin
[[autodoc]] FlaxModelMixin
## FlaxUNet2DConditionOutput
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionOutput
## FlaxUNet2DConditionModel
[[autodoc]] FlaxUNet2DConditionModel
## FlaxDecoderOutput
[[autodoc]] models.vae_flax.FlaxDecoderOutput
## FlaxAutoencoderKLOutput
[[autodoc]] models.vae_flax.FlaxAutoencoderKLOutput
## FlaxAutoencoderKL
[[autodoc]] FlaxAutoencoderKL
## FlaxControlNetOutput
[[autodoc]] models.controlnet_flax.FlaxControlNetOutput
## FlaxControlNetModel
[[autodoc]] FlaxControlNetModel
 | 
