Spaces:
Runtime error
Runtime error
File size: 9,076 Bytes
46a5dbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# ltx_manager_helpers.py
# Gerente de Pool de Workers LTX para revezamento assíncrono em múltiplas GPUs.
# Este arquivo é parte do projeto Euia-AducSdr e está sob a licença AGPL v3.
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
import torch
import gc
import os
import yaml
import numpy as np
import imageio
from pathlib import Path
import huggingface_hub
import threading
from PIL import Image
# Importa as funções e classes necessárias do inference.py
from inference import (
create_ltx_video_pipeline,
ConditioningItem,
calculate_padding,
prepare_conditioning
)
class LtxWorker:
"""
Representa uma única instância do pipeline LTX, associada a uma GPU específica.
O pipeline é carregado na CPU por padrão e movido para a GPU sob demanda.
"""
def __init__(self, device_id='cuda:0'):
self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu')
print(f"LTX Worker: Inicializando para o dispositivo {self.device} (carregando na CPU)...")
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
with open(config_file_path, "r") as file:
self.config = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
models_dir = "downloaded_models_gradio"
distilled_model_actual_path = huggingface_hub.hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["checkpoint_path"],
local_dir=models_dir,
local_dir_use_symlinks=False
)
self.pipeline = create_ltx_video_pipeline(
ckpt_path=distilled_model_actual_path,
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device='cpu'
)
print(f"LTX Worker para {self.device} pronto na CPU.")
def to_gpu(self):
"""Move o pipeline para a GPU designada."""
if self.device.type == 'cpu': return
print(f"LTX Worker: Movendo pipeline para {self.device}...")
self.pipeline.to(self.device)
print(f"LTX Worker: Pipeline na GPU {self.device}.")
def to_cpu(self):
"""Move o pipeline de volta para a CPU e limpa a memória da GPU."""
if self.device.type == 'cpu': return
print(f"LTX Worker: Descarregando pipeline da GPU {self.device}...")
self.pipeline.to('cpu')
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"LTX Worker: GPU {self.device} limpa.")
def generate_video_fragment_internal(self, **kwargs):
"""A lógica real da geração de vídeo, que espera estar na GPU."""
return self.pipeline(**kwargs)
class LtxPoolManager:
"""
Gerencia um pool de LtxWorkers, orquestrando um revezamento entre GPUs
para permitir que a limpeza de uma GPU ocorra em paralelo com a computação em outra.
"""
def __init__(self, device_ids=['cuda:2', 'cuda:3']):
print(f"LTX POOL MANAGER: Criando workers para os dispositivos: {device_ids}")
self.workers = [LtxWorker(device_id) for device_id in device_ids]
self.current_worker_index = 0
self.lock = threading.Lock()
self.last_cleanup_thread = None
def _cleanup_worker(self, worker):
"""Função alvo para a thread de limpeza."""
print(f"CLEANUP THREAD: Iniciando limpeza da GPU {worker.device} em background...")
worker.to_cpu()
print(f"CLEANUP THREAD: Limpeza da GPU {worker.device} concluída.")
def generate_video_fragment(
self,
motion_prompt: str, conditioning_items_data: list,
width: int, height: int, seed: int, cfg: float, video_total_frames: int,
video_fps: int, num_inference_steps: int, use_attention_slicing: bool,
current_fragment_index: int, output_path: str, progress
):
worker_to_use = None
try:
with self.lock:
# 1. Espera a limpeza da thread anterior, se ainda estiver rodando.
if self.last_cleanup_thread and self.last_cleanup_thread.is_alive():
print("LTX POOL MANAGER: Aguardando limpeza da GPU anterior...")
self.last_cleanup_thread.join()
print("LTX POOL MANAGER: Limpeza anterior concluída.")
# 2. Seleciona o worker ATUAL para o trabalho
worker_to_use = self.workers[self.current_worker_index]
# 3. Seleciona o worker ANTERIOR para iniciar a limpeza
previous_worker_index = (self.current_worker_index - 1 + len(self.workers)) % len(self.workers)
worker_to_cleanup = self.workers[previous_worker_index]
# 4. Dispara a limpeza do worker ANTERIOR em uma nova thread
cleanup_thread = threading.Thread(target=self._cleanup_worker, args=(worker_to_cleanup,))
cleanup_thread.start()
self.last_cleanup_thread = cleanup_thread
# 5. Prepara o worker ATUAL para a computação
worker_to_use.to_gpu()
# 6. Atualiza o índice para a PRÓXIMA chamada
self.current_worker_index = (self.current_worker_index + 1) % len(self.workers)
# --- A GERAÇÃO OCORRE FORA DO LOCK ---
target_device = worker_to_use.device
if use_attention_slicing:
worker_to_use.pipeline.enable_attention_slicing()
media_paths = [item[0] for item in conditioning_items_data]
start_frames = [item[1] for item in conditioning_items_data]
strengths = [item[2] for item in conditioning_items_data]
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
padding_vals = calculate_padding(height, width, padded_h, padded_w)
conditioning_items = prepare_conditioning(
conditioning_media_paths=media_paths, conditioning_strengths=strengths,
conditioning_start_frames=start_frames, height=height, width=width,
num_frames=video_total_frames, padding=padding_vals, pipeline=worker_to_use.pipeline,
)
for item in conditioning_items:
item.media_item = item.media_item.to(target_device)
first_pass_config = worker_to_use.config.get("first_pass", {}).copy()
first_pass_config['num_inference_steps'] = int(num_inference_steps)
kwargs = {
"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts",
"height": padded_h, "width": padded_w, "num_frames": video_total_frames,
"frame_rate": video_fps,
"generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index),
"output_type": "pt", "guidance_scale": float(cfg),
"timesteps": first_pass_config.get("timesteps"),
"conditioning_items": conditioning_items,
"decode_timestep": worker_to_use.config.get("decode_timestep"),
"decode_noise_scale": worker_to_use.config.get("decode_noise_scale"),
"stochastic_sampling": worker_to_use.config.get("stochastic_sampling"),
"image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True,
"mixed_precision": (worker_to_use.config.get("precision") == "mixed_precision"),
"enhance_prompt": False, "decode_every": 4, "num_inference_steps": int(num_inference_steps)
}
progress(0.1, desc=f"[Câmera LTX em {worker_to_use.device}] Filmando Cena {current_fragment_index}...")
result_tensor = worker_to_use.generate_video_fragment_internal(**kwargs).images
pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None
cropped_tensor = result_tensor[:, :, :video_total_frames, pad_t:slice_h, pad_l:slice_w]
video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer:
for frame in video_np: writer.append_data(frame)
return output_path, video_total_frames
finally:
if use_attention_slicing and worker_to_use and worker_to_use.pipeline:
worker_to_use.pipeline.disable_attention_slicing()
# A limpeza do worker_to_use será feita na PRÓXIMA chamada a esta função.
# Singleton do Gerenciador de Pool
# Por padrão, usa cuda:2 e cuda:3. Altere aqui se necessário.
ltx_manager_singleton = LtxPoolManager(device_ids=['cuda:2', 'cuda:3']) |