File size: 12,590 Bytes
770d5ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import spaces
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
import logging
import sys
import os
from accelerate import init_empty_weights
from typing import List, Dict
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import PyPDFLoader

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Get HuggingFace token from environment variable
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
if not hf_token:
    logger.error("HUGGINGFACE_TOKEN environment variable not set")
    raise ValueError("Please set the HUGGINGFACE_TOKEN environment variable")

# Constants
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
KNOWLEDGE_BASE_DIR = "knowledge_base"

class DocumentLoader:
    """Class to manage PDF document loading."""
    
    @staticmethod
    def load_pdfs(directory_path: str) -> List:
        documents = []
        pdf_files = [f for f in os.listdir(directory_path) if f.endswith('.pdf')]
        
        for pdf_file in pdf_files:
            pdf_path = os.path.join(directory_path, pdf_file)
            try:
                loader = PyPDFLoader(pdf_path)
                pdf_documents = loader.load()
                
                for doc in pdf_documents:
                    doc.metadata.update({
                        'title': pdf_file,
                        'type': 'technical' if 'Valencia' in pdf_file else 'qa',
                        'language': 'en',
                        'page': doc.metadata.get('page', 0)
                    })
                    documents.append(doc)
                
                logger.info(f"Document {pdf_file} loaded successfully")
            except Exception as e:
                logger.error(f"Error loading {pdf_file}: {str(e)}")
        
        return documents

class TextProcessor:
    """Class to process and split text into chunks."""
    
    def __init__(self):
        self.technical_splitter = RecursiveCharacterTextSplitter(
            chunk_size=800,
            chunk_overlap=200,
            separators=["\n\n", "\n", ". ", " ", ""],
            length_function=len
        )
        
        self.qa_splitter = RecursiveCharacterTextSplitter(
            chunk_size=500,
            chunk_overlap=100,
            separators=["\n\n", "\n", ". ", " ", ""],
            length_function=len
        )
    
    def process_documents(self, documents: List) -> List:
        if not documents:
            logger.warning("No documents to process")
            return []
            
        processed_chunks = []
        for doc in documents:
            splitter = self.technical_splitter if doc.metadata['type'] == 'technical' else self.qa_splitter
            chunks = splitter.split_documents([doc])
            processed_chunks.extend(chunks)
            
        logger.info(f"Documents processed into {len(processed_chunks)} chunks")
        return processed_chunks

class RAGSystem:
    """Main RAG system class."""
    
    def __init__(self, model_name: str = MODEL_NAME):
        self.model_name = model_name
        self.embeddings = None
        self.vector_store = None
        self.qa_chain = None
        self.tokenizer = None
        self.model = None
    
    def initialize_system(self):
        """Initialize complete RAG system."""
        try:
            logger.info("Starting RAG system initialization...")
            
            # Load and process documents
            loader = DocumentLoader()
            documents = loader.load_pdfs(KNOWLEDGE_BASE_DIR)
            
            processor = TextProcessor()
            processed_chunks = processor.process_documents(documents)
            
            # Initialize embeddings
            self.embeddings = HuggingFaceEmbeddings(
                model_name="intfloat/multilingual-e5-large",
                model_kwargs={'device': 'cuda'},
                encode_kwargs={'normalize_embeddings': True}
            )
            
            # Create vector store
            self.vector_store = FAISS.from_documents(
                processed_chunks,
                self.embeddings
            )
            
            # Initialize LLM
            self.tokenizer = AutoTokenizer.from_pretrained(
                self.model_name,
                trust_remote_code=True,
                token=hf_token
            )
            
            self.model = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                torch_dtype=torch.float16,
                trust_remote_code=True,
                token=hf_token,
                device_map="auto"
            )
            
            # Create generation pipeline
            pipe = pipeline(
                "text-generation",
                model=self.model,
                tokenizer=self.tokenizer,
                max_new_tokens=512,
                temperature=0.1,
                top_p=0.95,
                repetition_penalty=1.15,
                device_map="auto"
            )
            
            llm = HuggingFacePipeline(pipeline=pipe)
            
            # Create prompt template
            prompt_template = """
            Context: {context}
            
            Based on the context above, please provide a clear and concise answer to the following question.
            If the information is not in the context, explicitly state so.
            
            Question: {question}
            """
            
            PROMPT = PromptTemplate(
                template=prompt_template,
                input_variables=["context", "question"]
            )
            
            # Set up QA chain
            self.qa_chain = RetrievalQA.from_chain_type(
                llm=llm,
                chain_type="stuff",
                retriever=self.vector_store.as_retriever(
                    search_kwargs={"k": 6}
                ),
                return_source_documents=True,
                chain_type_kwargs={"prompt": PROMPT}
            )
            
            logger.info("RAG system initialized successfully")
            
        except Exception as e:
            logger.error(f"Error during RAG system initialization: {str(e)}")
            raise

    def generate_response(self, question: str) -> Dict:
        """Generate response for a given question."""
        try:
            result = self.qa_chain({"query": question})
            
            response = {
                'answer': result['result'],
                'sources': []
            }
            
            for doc in result['source_documents']:
                source = {
                    'title': doc.metadata.get('title', 'Unknown'),
                    'content': doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content,
                    'metadata': doc.metadata
                }
                response['sources'].append(source)
            
            return response
            
        except Exception as e:
            logger.error(f"Error generating response: {str(e)}")
            raise

@spaces.GPU(duration=60)
def process_response(user_input: str, chat_history: List) -> tuple:
    """Process user input and generate response."""
    try:
        response = rag_system.generate_response(user_input)
        
        # Clean and format response
        answer = response['answer']
        if "Answer:" in answer:
            answer = answer.split("Answer:")[-1].strip()
        
        # Format sources
        sources = set([source['title'] for source in response['sources'][:3]])
        if sources:
            answer += "\n\nπŸ“š Sources consulted:\n" + "\n".join([f"β€’ {source}" for source in sources])
        
        chat_history.append((user_input, answer))
        return chat_history
        
    except Exception as e:
        logger.error(f"Error in process_response: {str(e)}")
        error_message = f"Sorry, an error occurred: {str(e)}"
        chat_history.append((user_input, error_message))
        return chat_history

# Initialize RAG system
logger.info("Initializing RAG system...")
rag_system = RAGSystem()
rag_system.initialize_system()
logger.info("RAG system initialization completed")

# Create Gradio interface
try:
    logger.info("Creating Gradio interface...")
    with gr.Blocks(css="div.gradio-container {background-color: #f0f2f6}") as demo:
        gr.HTML("""
            <div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
                <h1 style="color: #2d333a;">πŸ“Š FislacBot</h1>
                <p style="color: #4a5568;">
                    AI Assistant specialized in fiscal analysis and FISLAC documentation
                </p>
            </div>
        """)

        chatbot = gr.Chatbot(
            show_label=False,
            container=True,
            height=500,
            bubble_full_width=True,
            show_copy_button=True,
            scale=2
        )
        
        with gr.Row():
            message = gr.Textbox(
                placeholder="πŸ’­ Type your question here...",
                show_label=False,
                container=False,
                scale=8,
                autofocus=True
            )
            clear = gr.Button("πŸ—‘οΈ Clear", size="sm", scale=1)

        # Suggested questions
        gr.HTML('<p style="color: #2d333a; font-weight: bold; margin: 20px 0 10px 0;">πŸ’‘ Suggested questions:</p>')
        with gr.Row():
            suggestion1 = gr.Button("What is FISLAC?", scale=1)
            suggestion2 = gr.Button("What are the main modules of FISLAC?", scale=1)
            
        with gr.Row():
            suggestion3 = gr.Button("What macroeconomic variables are relevant for advanced economies?", scale=1)
            suggestion4 = gr.Button("How does fiscal risk compare between emerging and advanced countries?", scale=1)

        # Footer
        gr.HTML("""
            <div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 20px;
                        background-color: #f8f9fa; border-radius: 10px;">
                <div style="margin-bottom: 15px;">
                    <h3 style="color: #2d333a;">πŸ” About this assistant</h3>
                    <p style="color: #666; font-size: 14px;">
                        This bot uses RAG (Retrieval Augmented Generation) technology combining:
                    </p>
                    <ul style="list-style: none; color: #666; font-size: 14px;">
                        <li>πŸ”Ή LLM Engine: Llama-2-7b-chat-hf</li>
                        <li>πŸ”Ή Embeddings: multilingual-e5-large</li>
                        <li>πŸ”Ή Vector Store: FAISS</li>
                    </ul>
                </div>
                <div style="border-top: 1px solid #ddd; padding-top: 15px;">
                    <p style="color: #666; font-size: 14px;">
                        <strong>Current Knowledge Base:</strong><br>
                        β€’ Valencia et al. (2022) - "Assessing macro-fiscal risk for Latin American and Caribbean countries"<br>
                        β€’ FISLAC Technical Documentation
                    </p>
                </div>
                <div style="border-top: 1px solid #ddd; margin-top: 15px; padding-top: 15px;">
                    <p style="color: #666; font-size: 14px;">
                        Created by <a href="https://www.linkedin.com/in/camilo-vega-169084b1/" 
                        target="_blank" style="color: #2196F3; text-decoration: none;">Camilo Vega</a>,
                        AI Consultant πŸ€–
                    </p>
                </div>
            </div>
        """)

        # Configure event handlers
        def submit(user_input, chat_history):
            return process_response(user_input, chat_history)
            
        message.submit(submit, [message, chatbot], [chatbot])
        clear.click(lambda: None, None, chatbot)
        
        # Handle suggested questions
        for btn in [suggestion1, suggestion2, suggestion3, suggestion4]:
            btn.click(submit, [btn, chatbot], [chatbot])

    logger.info("Gradio interface created successfully")
    demo.launch()

except Exception as e:
    logger.error(f"Error in Gradio interface creation: {str(e)}")
    raise