File size: 8,557 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/losses/drrg_loss.py
"""

import paddle
import paddle.nn.functional as F
from paddle import nn


class DRRGLoss(nn.Layer):
    def __init__(self, ohem_ratio=3.0):
        super().__init__()
        self.ohem_ratio = ohem_ratio
        self.downsample_ratio = 1.0

    def balance_bce_loss(self, pred, gt, mask):
        """Balanced Binary-CrossEntropy Loss.

        Args:
            pred (Tensor): Shape of :math:`(1, H, W)`.
            gt (Tensor): Shape of :math:`(1, H, W)`.
            mask (Tensor): Shape of :math:`(1, H, W)`.

        Returns:
            Tensor: Balanced bce loss.
        """
        assert pred.shape == gt.shape == mask.shape
        assert paddle.all(pred >= 0) and paddle.all(pred <= 1)
        assert paddle.all(gt >= 0) and paddle.all(gt <= 1)
        positive = gt * mask
        negative = (1 - gt) * mask
        positive_count = int(positive.sum())

        if positive_count > 0:
            loss = F.binary_cross_entropy(pred, gt, reduction='none')
            positive_loss = paddle.sum(loss * positive)
            negative_loss = loss * negative
            negative_count = min(
                int(negative.sum()), int(positive_count * self.ohem_ratio))
        else:
            positive_loss = paddle.to_tensor(0.0)
            loss = F.binary_cross_entropy(pred, gt, reduction='none')
            negative_loss = loss * negative
            negative_count = 100
        negative_loss, _ = paddle.topk(
            negative_loss.reshape([-1]), negative_count)

        balance_loss = (positive_loss + paddle.sum(negative_loss)) / (
            float(positive_count + negative_count) + 1e-5)

        return balance_loss

    def gcn_loss(self, gcn_data):
        """CrossEntropy Loss from gcn module.

        Args:
            gcn_data (tuple(Tensor, Tensor)): The first is the
                prediction with shape :math:`(N, 2)` and the
                second is the gt label with shape :math:`(m, n)`
                where :math:`m * n = N`.

        Returns:
            Tensor: CrossEntropy loss.
        """
        gcn_pred, gt_labels = gcn_data
        gt_labels = gt_labels.reshape([-1])
        loss = F.cross_entropy(gcn_pred, gt_labels)

        return loss

    def bitmasks2tensor(self, bitmasks, target_sz):
        """Convert Bitmasks to tensor.

        Args:
            bitmasks (list[BitmapMasks]): The BitmapMasks list. Each item is
                for one img.
            target_sz (tuple(int, int)): The target tensor of size
                :math:`(H, W)`.

        Returns:
            list[Tensor]: The list of kernel tensors. Each element stands for
            one kernel level.
        """
        batch_size = len(bitmasks)
        results = []

        kernel = []
        for batch_inx in range(batch_size):
            mask = bitmasks[batch_inx]
            # hxw
            mask_sz = mask.shape
            # left, right, top, bottom
            pad = [0, target_sz[1] - mask_sz[1], 0, target_sz[0] - mask_sz[0]]
            mask = F.pad(mask, pad, mode='constant', value=0)
            kernel.append(mask)
        kernel = paddle.stack(kernel)
        results.append(kernel)

        return results

    def forward(self, preds, labels):
        """Compute Drrg loss.
        """

        assert isinstance(preds, tuple)
        gt_text_mask, gt_center_region_mask, gt_mask, gt_top_height_map, gt_bot_height_map, gt_sin_map, gt_cos_map = labels[
            1:8]

        downsample_ratio = self.downsample_ratio

        pred_maps, gcn_data = preds
        pred_text_region = pred_maps[:, 0, :, :]
        pred_center_region = pred_maps[:, 1, :, :]
        pred_sin_map = pred_maps[:, 2, :, :]
        pred_cos_map = pred_maps[:, 3, :, :]
        pred_top_height_map = pred_maps[:, 4, :, :]
        pred_bot_height_map = pred_maps[:, 5, :, :]
        feature_sz = pred_maps.shape

        # bitmask 2 tensor
        mapping = {
            'gt_text_mask': paddle.cast(gt_text_mask, 'float32'),
            'gt_center_region_mask':
            paddle.cast(gt_center_region_mask, 'float32'),
            'gt_mask': paddle.cast(gt_mask, 'float32'),
            'gt_top_height_map': paddle.cast(gt_top_height_map, 'float32'),
            'gt_bot_height_map': paddle.cast(gt_bot_height_map, 'float32'),
            'gt_sin_map': paddle.cast(gt_sin_map, 'float32'),
            'gt_cos_map': paddle.cast(gt_cos_map, 'float32')
        }
        gt = {}
        for key, value in mapping.items():
            gt[key] = value
            if abs(downsample_ratio - 1.0) < 1e-2:
                gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
            else:
                gt[key] = [item.rescale(downsample_ratio) for item in gt[key]]
                gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
                if key in ['gt_top_height_map', 'gt_bot_height_map']:
                    gt[key] = [item * downsample_ratio for item in gt[key]]
            gt[key] = [item for item in gt[key]]

        scale = paddle.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8))
        pred_sin_map = pred_sin_map * scale
        pred_cos_map = pred_cos_map * scale

        loss_text = self.balance_bce_loss(
            F.sigmoid(pred_text_region), gt['gt_text_mask'][0],
            gt['gt_mask'][0])

        text_mask = (gt['gt_text_mask'][0] * gt['gt_mask'][0])
        negative_text_mask = ((1 - gt['gt_text_mask'][0]) * gt['gt_mask'][0])
        loss_center_map = F.binary_cross_entropy(
            F.sigmoid(pred_center_region),
            gt['gt_center_region_mask'][0],
            reduction='none')
        if int(text_mask.sum()) > 0:
            loss_center_positive = paddle.sum(loss_center_map *
                                              text_mask) / paddle.sum(text_mask)
        else:
            loss_center_positive = paddle.to_tensor(0.0)
        loss_center_negative = paddle.sum(
            loss_center_map *
            negative_text_mask) / paddle.sum(negative_text_mask)
        loss_center = loss_center_positive + 0.5 * loss_center_negative

        center_mask = (gt['gt_center_region_mask'][0] * gt['gt_mask'][0])
        if int(center_mask.sum()) > 0:
            map_sz = pred_top_height_map.shape
            ones = paddle.ones(map_sz, dtype='float32')
            loss_top = F.smooth_l1_loss(
                pred_top_height_map / (gt['gt_top_height_map'][0] + 1e-2),
                ones,
                reduction='none')
            loss_bot = F.smooth_l1_loss(
                pred_bot_height_map / (gt['gt_bot_height_map'][0] + 1e-2),
                ones,
                reduction='none')
            gt_height = (
                gt['gt_top_height_map'][0] + gt['gt_bot_height_map'][0])
            loss_height = paddle.sum(
                (paddle.log(gt_height + 1) *
                 (loss_top + loss_bot)) * center_mask) / paddle.sum(center_mask)

            loss_sin = paddle.sum(
                F.smooth_l1_loss(
                    pred_sin_map, gt['gt_sin_map'][0],
                    reduction='none') * center_mask) / paddle.sum(center_mask)
            loss_cos = paddle.sum(
                F.smooth_l1_loss(
                    pred_cos_map, gt['gt_cos_map'][0],
                    reduction='none') * center_mask) / paddle.sum(center_mask)
        else:
            loss_height = paddle.to_tensor(0.0)
            loss_sin = paddle.to_tensor(0.0)
            loss_cos = paddle.to_tensor(0.0)

        loss_gcn = self.gcn_loss(gcn_data)

        loss = loss_text + loss_center + loss_height + loss_sin + loss_cos + loss_gcn
        results = dict(
            loss=loss,
            loss_text=loss_text,
            loss_center=loss_center,
            loss_height=loss_height,
            loss_sin=loss_sin,
            loss_cos=loss_cos,
            loss_gcn=loss_gcn)

        return results