File size: 11,275 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "..")))

import argparse

import paddle
from paddle.jit import to_static

from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser


def export_single_model(model,
                        arch_config,
                        save_path,
                        logger,
                        input_shape=None,
                        quanter=None):
    if arch_config["algorithm"] == "SRN":
        max_text_length = arch_config["Head"]["max_text_length"]
        other_shape = [
            paddle.static.InputSpec(
                shape=[None, 1, 64, 256], dtype="float32"), [
                    paddle.static.InputSpec(
                        shape=[None, 256, 1],
                        dtype="int64"), paddle.static.InputSpec(
                            shape=[None, max_text_length, 1], dtype="int64"),
                    paddle.static.InputSpec(
                        shape=[None, 8, max_text_length, max_text_length],
                        dtype="int64"), paddle.static.InputSpec(
                            shape=[None, 8, max_text_length, max_text_length],
                            dtype="int64")
                ]
        ]
        model = to_static(model, input_spec=other_shape)
    elif arch_config["algorithm"] == "SAR":
        other_shape = [
            paddle.static.InputSpec(
                shape=[None, 3, 48, 160], dtype="float32"),
            [paddle.static.InputSpec(
                shape=[None], dtype="float32")]
        ]
        model = to_static(model, input_spec=other_shape)
    elif arch_config["algorithm"] == "SVTR":
        if arch_config["Head"]["name"] == 'MultiHead':
            other_shape = [
                paddle.static.InputSpec(
                    shape=[None, 3, 48, -1], dtype="float32"),
            ]
        else:
            other_shape = [
                paddle.static.InputSpec(
                    shape=[None] + input_shape, dtype="float32"),
            ]
        model = to_static(model, input_spec=other_shape)
    elif arch_config["algorithm"] == "PREN":
        other_shape = [
            paddle.static.InputSpec(
                shape=[None, 3, 64, 256], dtype="float32"),
        ]
        model = to_static(model, input_spec=other_shape)
    elif arch_config["model_type"] == "sr":
        other_shape = [
            paddle.static.InputSpec(
                shape=[None, 3, 16, 64], dtype="float32")
        ]
        model = to_static(model, input_spec=other_shape)
    elif arch_config["algorithm"] == "ViTSTR":
        other_shape = [
            paddle.static.InputSpec(
                shape=[None, 1, 224, 224], dtype="float32"),
        ]
        model = to_static(model, input_spec=other_shape)
    elif arch_config["algorithm"] == "ABINet":
        other_shape = [
            paddle.static.InputSpec(
                shape=[None, 3, 32, 128], dtype="float32"),
        ]
        # print([None, 3, 32, 128])
        model = to_static(model, input_spec=other_shape)
    elif arch_config["algorithm"] in ["NRTR", "SPIN", 'RFL']:
        other_shape = [
            paddle.static.InputSpec(
                shape=[None, 1, 32, 100], dtype="float32"),
        ]
        model = to_static(model, input_spec=other_shape)
    elif arch_config["algorithm"] == "VisionLAN":
        other_shape = [
            paddle.static.InputSpec(
                shape=[None, 3, 64, 256], dtype="float32"),
        ]
        model = to_static(model, input_spec=other_shape)
    elif arch_config["algorithm"] == "RobustScanner":
        max_text_length = arch_config["Head"]["max_text_length"]
        other_shape = [
            paddle.static.InputSpec(
                shape=[None, 3, 48, 160], dtype="float32"), [
                    paddle.static.InputSpec(
                        shape=[None, ], dtype="float32"),
                    paddle.static.InputSpec(
                        shape=[None, max_text_length], dtype="int64")
                ]
        ]
        model = to_static(model, input_spec=other_shape)
    elif arch_config["algorithm"] == "CAN":
        other_shape = [[
            paddle.static.InputSpec(
                shape=[None, 1, None, None],
                dtype="float32"), paddle.static.InputSpec(
                    shape=[None, 1, None, None], dtype="float32"),
            paddle.static.InputSpec(
                shape=[None, arch_config['Head']['max_text_length']],
                dtype="int64")
        ]]
        model = to_static(model, input_spec=other_shape)
    elif arch_config["algorithm"] in ["LayoutLM", "LayoutLMv2", "LayoutXLM"]:
        input_spec = [
            paddle.static.InputSpec(
                shape=[None, 512], dtype="int64"),  # input_ids
            paddle.static.InputSpec(
                shape=[None, 512, 4], dtype="int64"),  # bbox
            paddle.static.InputSpec(
                shape=[None, 512], dtype="int64"),  # attention_mask
            paddle.static.InputSpec(
                shape=[None, 512], dtype="int64"),  # token_type_ids
            paddle.static.InputSpec(
                shape=[None, 3, 224, 224], dtype="int64"),  # image
        ]
        if 'Re' in arch_config['Backbone']['name']:
            input_spec.extend([
                paddle.static.InputSpec(
                    shape=[None, 512, 3], dtype="int64"),  # entities
                paddle.static.InputSpec(
                    shape=[None, None, 2], dtype="int64"),  # relations
            ])
        if model.backbone.use_visual_backbone is False:
            input_spec.pop(4)
        model = to_static(model, input_spec=[input_spec])
    else:
        infer_shape = [3, -1, -1]
        if arch_config["model_type"] == "rec":
            infer_shape = [3, 32, -1]  # for rec model, H must be 32
            if "Transform" in arch_config and arch_config[
                    "Transform"] is not None and arch_config["Transform"][
                        "name"] == "TPS":
                logger.info(
                    "When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training"
                )
                infer_shape[-1] = 100
        elif arch_config["model_type"] == "table":
            infer_shape = [3, 488, 488]
            if arch_config["algorithm"] == "TableMaster":
                infer_shape = [3, 480, 480]
            if arch_config["algorithm"] == "SLANet":
                infer_shape = [3, -1, -1]
        model = to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None] + infer_shape, dtype="float32")
            ])

    if quanter is None:
        paddle.jit.save(model, save_path)
    else:
        quanter.save_quantized_model(model, save_path)
    logger.info("inference model is saved to {}".format(save_path))
    return


def main():
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    config = merge_config(config, FLAGS.opt)
    logger = get_logger()
    # build post process

    post_process_class = build_post_process(config["PostProcess"],
                                            config["Global"])

    # build model
    # for rec algorithm
    if hasattr(post_process_class, "character"):
        char_num = len(getattr(post_process_class, "character"))
        if config["Architecture"]["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config["Architecture"]["Models"]:
                if config["Architecture"]["Models"][key]["Head"][
                        "name"] == 'MultiHead':  # multi head
                    out_channels_list = {}
                    if config['PostProcess'][
                            'name'] == 'DistillationSARLabelDecode':
                        char_num = char_num - 2
                    out_channels_list['CTCLabelDecode'] = char_num
                    out_channels_list['SARLabelDecode'] = char_num + 2
                    config['Architecture']['Models'][key]['Head'][
                        'out_channels_list'] = out_channels_list
                else:
                    config["Architecture"]["Models"][key]["Head"][
                        "out_channels"] = char_num
                # just one final tensor needs to exported for inference
                config["Architecture"]["Models"][key][
                    "return_all_feats"] = False
        elif config['Architecture']['Head'][
                'name'] == 'MultiHead':  # multi head
            out_channels_list = {}
            char_num = len(getattr(post_process_class, 'character'))
            if config['PostProcess']['name'] == 'SARLabelDecode':
                char_num = char_num - 2
            out_channels_list['CTCLabelDecode'] = char_num
            out_channels_list['SARLabelDecode'] = char_num + 2
            config['Architecture']['Head'][
                'out_channels_list'] = out_channels_list
        else:  # base rec model
            config["Architecture"]["Head"]["out_channels"] = char_num

    # for sr algorithm
    if config["Architecture"]["model_type"] == "sr":
        config['Architecture']["Transform"]['infer_mode'] = True
    model = build_model(config["Architecture"])
    load_model(config, model, model_type=config['Architecture']["model_type"])
    model.eval()

    save_path = config["Global"]["save_inference_dir"]

    arch_config = config["Architecture"]

    if arch_config["algorithm"] == "SVTR" and arch_config["Head"][
            "name"] != 'MultiHead':
        input_shape = config["Eval"]["dataset"]["transforms"][-2][
            'SVTRRecResizeImg']['image_shape']
    else:
        input_shape = None

    if arch_config["algorithm"] in ["Distillation", ]:  # distillation model
        archs = list(arch_config["Models"].values())
        for idx, name in enumerate(model.model_name_list):
            sub_model_save_path = os.path.join(save_path, name, "inference")
            export_single_model(model.model_list[idx], archs[idx],
                                sub_model_save_path, logger)
    else:
        save_path = os.path.join(save_path, "inference")
        export_single_model(
            model, arch_config, save_path, logger, input_shape=input_shape)


if __name__ == "__main__":
    main()