File size: 5,658 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from PIL import Image
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, __dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import numpy as np
import math
import time
import traceback
import paddle

import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read

logger = get_logger()


class TextSR(object):
    def __init__(self, args):
        self.sr_image_shape = [int(v) for v in args.sr_image_shape.split(",")]
        self.sr_batch_num = args.sr_batch_num

        self.predictor, self.input_tensor, self.output_tensors, self.config = \
            utility.create_predictor(args, 'sr', logger)
        self.benchmark = args.benchmark
        if args.benchmark:
            import auto_log
            pid = os.getpid()
            gpu_id = utility.get_infer_gpuid()
            self.autolog = auto_log.AutoLogger(
                model_name="sr",
                model_precision=args.precision,
                batch_size=args.sr_batch_num,
                data_shape="dynamic",
                save_path=None,  #args.save_log_path,
                inference_config=self.config,
                pids=pid,
                process_name=None,
                gpu_ids=gpu_id if args.use_gpu else None,
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
                warmup=0,
                logger=logger)

    def resize_norm_img(self, img):
        imgC, imgH, imgW = self.sr_image_shape
        img = img.resize((imgW // 2, imgH // 2), Image.BICUBIC)
        img_numpy = np.array(img).astype("float32")
        img_numpy = img_numpy.transpose((2, 0, 1)) / 255
        return img_numpy

    def __call__(self, img_list):
        img_num = len(img_list)
        batch_num = self.sr_batch_num
        st = time.time()
        st = time.time()
        all_result = [] * img_num
        if self.benchmark:
            self.autolog.times.start()
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            imgC, imgH, imgW = self.sr_image_shape
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[ino])
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)

            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            if self.benchmark:
                self.autolog.times.stamp()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.run()
            outputs = []
            for output_tensor in self.output_tensors:
                output = output_tensor.copy_to_cpu()
                outputs.append(output)
            if len(outputs) != 1:
                preds = outputs
            else:
                preds = outputs[0]
            all_result.append(outputs)
        if self.benchmark:
            self.autolog.times.end(stamp=True)
        return all_result, time.time() - st


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    text_recognizer = TextSR(args)
    valid_image_file_list = []
    img_list = []

    # warmup 2 times
    if args.warmup:
        img = np.random.uniform(0, 255, [16, 64, 3]).astype(np.uint8)
        for i in range(2):
            res = text_recognizer([img] * int(args.sr_batch_num))

    for image_file in image_file_list:
        img, flag, _ = check_and_read(image_file)
        if not flag:
            img = Image.open(image_file).convert("RGB")
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    try:
        preds, _ = text_recognizer(img_list)
        for beg_no in range(len(preds)):
            sr_img = preds[beg_no][1]
            lr_img = preds[beg_no][0]
            for i in (range(sr_img.shape[0])):
                fm_sr = (sr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8)
                fm_lr = (lr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8)
                img_name_pure = os.path.split(valid_image_file_list[
                    beg_no * args.sr_batch_num + i])[-1]
                cv2.imwrite("infer_result/sr_{}".format(img_name_pure),
                            fm_sr[:, :, ::-1])
                logger.info("The visualized image saved in infer_result/sr_{}".
                            format(img_name_pure))

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    if args.benchmark:
        text_recognizer.autolog.report()


if __name__ == "__main__":
    main(utility.parse_args())