File size: 5,146 Bytes
a89d9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import imghdr
import cv2
import random
import numpy as np
import paddle
def print_dict(d, logger, delimiter=0):
"""
Recursively visualize a dict and
indenting acrrording by the relationship of keys.
"""
for k, v in sorted(d.items()):
if isinstance(v, dict):
logger.info("{}{} : ".format(delimiter * " ", str(k)))
print_dict(v, logger, delimiter + 4)
elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
logger.info("{}{} : ".format(delimiter * " ", str(k)))
for value in v:
print_dict(value, logger, delimiter + 4)
else:
logger.info("{}{} : {}".format(delimiter * " ", k, v))
def get_check_global_params(mode):
check_params = ['use_gpu', 'max_text_length', 'image_shape', \
'image_shape', 'character_type', 'loss_type']
if mode == "train_eval":
check_params = check_params + [ \
'train_batch_size_per_card', 'test_batch_size_per_card']
elif mode == "test":
check_params = check_params + ['test_batch_size_per_card']
return check_params
def _check_image_file(path):
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'pdf'}
return any([path.lower().endswith(e) for e in img_end])
def get_image_file_list(img_file):
imgs_lists = []
if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file))
if os.path.isfile(img_file) and _check_image_file(img_file):
imgs_lists.append(img_file)
elif os.path.isdir(img_file):
for single_file in os.listdir(img_file):
file_path = os.path.join(img_file, single_file)
if os.path.isfile(file_path) and _check_image_file(file_path):
imgs_lists.append(file_path)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file))
imgs_lists = sorted(imgs_lists)
return imgs_lists
def check_and_read(img_path):
if os.path.basename(img_path)[-3:].lower() == 'gif':
gif = cv2.VideoCapture(img_path)
ret, frame = gif.read()
if not ret:
logger = logging.getLogger('ppocr')
logger.info("Cannot read {}. This gif image maybe corrupted.")
return None, False
if len(frame.shape) == 2 or frame.shape[-1] == 1:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
imgvalue = frame[:, :, ::-1]
return imgvalue, True, False
elif os.path.basename(img_path)[-3:].lower() == 'pdf':
import fitz
from PIL import Image
imgs = []
with fitz.open(img_path) as pdf:
for pg in range(0, pdf.page_count):
page = pdf[pg]
mat = fitz.Matrix(2, 2)
pm = page.get_pixmap(matrix=mat, alpha=False)
# if width or height > 2000 pixels, don't enlarge the image
if pm.width > 2000 or pm.height > 2000:
pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
imgs.append(img)
return imgs, False, True
return None, False, False
def load_vqa_bio_label_maps(label_map_path):
with open(label_map_path, "r", encoding='utf-8') as fin:
lines = fin.readlines()
old_lines = [line.strip() for line in lines]
lines = ["O"]
for line in old_lines:
# "O" has already been in lines
if line.upper() in ["OTHER", "OTHERS", "IGNORE"]:
continue
lines.append(line)
labels = ["O"]
for line in lines[1:]:
labels.append("B-" + line)
labels.append("I-" + line)
label2id_map = {label.upper(): idx for idx, label in enumerate(labels)}
id2label_map = {idx: label.upper() for idx, label in enumerate(labels)}
return label2id_map, id2label_map
def set_seed(seed=1024):
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
class AverageMeter:
def __init__(self):
self.reset()
def reset(self):
"""reset"""
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
"""update"""
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
|