File size: 5,146 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import imghdr
import cv2
import random
import numpy as np
import paddle


def print_dict(d, logger, delimiter=0):
    """
    Recursively visualize a dict and
    indenting acrrording by the relationship of keys.
    """
    for k, v in sorted(d.items()):
        if isinstance(v, dict):
            logger.info("{}{} : ".format(delimiter * " ", str(k)))
            print_dict(v, logger, delimiter + 4)
        elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
            logger.info("{}{} : ".format(delimiter * " ", str(k)))
            for value in v:
                print_dict(value, logger, delimiter + 4)
        else:
            logger.info("{}{} : {}".format(delimiter * " ", k, v))


def get_check_global_params(mode):
    check_params = ['use_gpu', 'max_text_length', 'image_shape', \
                    'image_shape', 'character_type', 'loss_type']
    if mode == "train_eval":
        check_params = check_params + [ \
            'train_batch_size_per_card', 'test_batch_size_per_card']
    elif mode == "test":
        check_params = check_params + ['test_batch_size_per_card']
    return check_params


def _check_image_file(path):
    img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'pdf'}
    return any([path.lower().endswith(e) for e in img_end])


def get_image_file_list(img_file):
    imgs_lists = []
    if img_file is None or not os.path.exists(img_file):
        raise Exception("not found any img file in {}".format(img_file))

    if os.path.isfile(img_file) and _check_image_file(img_file):
        imgs_lists.append(img_file)
    elif os.path.isdir(img_file):
        for single_file in os.listdir(img_file):
            file_path = os.path.join(img_file, single_file)
            if os.path.isfile(file_path) and _check_image_file(file_path):
                imgs_lists.append(file_path)
    if len(imgs_lists) == 0:
        raise Exception("not found any img file in {}".format(img_file))
    imgs_lists = sorted(imgs_lists)
    return imgs_lists


def check_and_read(img_path):
    if os.path.basename(img_path)[-3:].lower() == 'gif':
        gif = cv2.VideoCapture(img_path)
        ret, frame = gif.read()
        if not ret:
            logger = logging.getLogger('ppocr')
            logger.info("Cannot read {}. This gif image maybe corrupted.")
            return None, False
        if len(frame.shape) == 2 or frame.shape[-1] == 1:
            frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
        imgvalue = frame[:, :, ::-1]
        return imgvalue, True, False
    elif os.path.basename(img_path)[-3:].lower() == 'pdf':
        import fitz
        from PIL import Image
        imgs = []
        with fitz.open(img_path) as pdf:
            for pg in range(0, pdf.page_count):
                page = pdf[pg]
                mat = fitz.Matrix(2, 2)
                pm = page.get_pixmap(matrix=mat, alpha=False)

                # if width or height > 2000 pixels, don't enlarge the image
                if pm.width > 2000 or pm.height > 2000:
                    pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)

                img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
                img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
                imgs.append(img)
            return imgs, False, True
    return None, False, False


def load_vqa_bio_label_maps(label_map_path):
    with open(label_map_path, "r", encoding='utf-8') as fin:
        lines = fin.readlines()
    old_lines = [line.strip() for line in lines]
    lines = ["O"]
    for line in old_lines:
        # "O" has already been in lines
        if line.upper() in ["OTHER", "OTHERS", "IGNORE"]:
            continue
        lines.append(line)
    labels = ["O"]
    for line in lines[1:]:
        labels.append("B-" + line)
        labels.append("I-" + line)
    label2id_map = {label.upper(): idx for idx, label in enumerate(labels)}
    id2label_map = {idx: label.upper() for idx, label in enumerate(labels)}
    return label2id_map, id2label_map


def set_seed(seed=1024):
    random.seed(seed)
    np.random.seed(seed)
    paddle.seed(seed)


class AverageMeter:
    def __init__(self):
        self.reset()

    def reset(self):
        """reset"""
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        """update"""
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count