File size: 3,066 Bytes
3f44072 de18ebe 9e20b12 d78cd77 9e20b12 f59034e 3f44072 f59034e d78cd77 f59034e d78cd77 f59034e d78cd77 9e20b12 f59034e 8983ff3 f59034e 3f44072 f59034e d78cd77 9e20b12 d78cd77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
from pyannote.audio import Pipeline
from transformers import pipeline
asr = pipeline(
"automatic-speech-recognition",
model="facebook/wav2vec2-large-960h-lv60-self",
feature_extractor="facebook/wav2vec2-large-960h-lv60-self",
)
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-segmentation")
def segmentation(audio):
speaker_output = speaker_segmentation(audio)
text_output = asr(audio,return_timestamps="word")
full_text = text_output['text'].lower()
chunks = text_output['chunks']
diarized_output = ""
i = 0
for turn, _, speaker in speaker_output.itertracks(yield_label=True):
diarized = ""
while i < len(chunks) and chunks[i]['timestamp'][1] <= turn.end:
diarized += chunks[i]['text'].lower() + ' '
i += 1
if diarized != "":
diarized_output += "{}: ''{}'' from {:.3f}-{:.3f}\n".format(speaker,diarized,turn.start,turn.end)
return diarized_output, full_text
title = "Speech Recognition with Speaker Segmentation"
description = "Speaker Diarization is the act of attributing individual speakers to their corresponding parts in an audio recording. This space aims to distinguish the speakers with speaker segmentation and their speech with speech-to-text from a given input audio file. Pre-trained models used are Pyannote[1] for the Speaker Segmentation and Wav2Vec2[2] for the Automatic Speech Recognition."
article = "<p style='text-align: center'><a href='https://github.com/pyannote/pyannote-audio' target='_blank'>[1] Pyannote - Speaker Segmentation model (GitHub repo)</a></p>"
article += "<p style='text-align: center'><a href='https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20' target='_blank'>[2] Facebook Wav2Vec2 (GitHub repo)</a></p>"
article += "<p style='text-align: center'>Audio File Sources: <a href='https://www.youtube.com/watch?v=DYu_bGbZiiQ&t=132s' target='_blank'>1</a> <a href='https://www.youtube.com/watch?v=DDjWTWHHkpk&t=29s' target='_blank'>2</a> <a href='https://www.youtube.com/watch?v=G2xWg2ckKHI&t=24s' target='_blank'>3</a> <a href='https://www.youtube.com/watch?v=sCcv9uqSBU0&t=32s' target='_blank'>4</a> <a href='https://www.youtube.com/watch?v=K1hlp0DCE_8&t=71s' target='_blank'>5</a></p>"
inputs = gr.inputs.Audio(source="upload", type="filepath", label="Upload your audio file here:")
outputs = [gr.outputs.Textbox(type="auto", label="Diarized Output"),
gr.outputs.Textbox(type="auto",label="Full ASR Text for comparison")]
examples = [["meeting_audio.wav"],
["noisy_london_interview.wav"],
["clean_london_interview.wav"],
["podcast_audio.wav"],
["air_traffic_control_audio.wav"],]
app = gr.Interface(fn=segmentation,
inputs=inputs,
outputs=outputs,
examples=examples,
title=title,
description=description,
article=article,
allow_flagging=False)
app.launch() |