Spaces:
Paused
Paused
File size: 11,547 Bytes
0fdb130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
Metadata-Version: 2.1
Name: setfit
Version: 1.0.1
Summary: Efficient few-shot learning with Sentence Transformers
Home-page: https://github.com/huggingface/setfit
Download-URL: https://github.com/huggingface/setfit/tags
Maintainer: Lewis Tunstall, Tom Aarsen
Maintainer-email: lewis@huggingface.co
License: Apache 2.0
Keywords: nlp,machine learning,fewshot learning,transformers
Classifier: Development Status :: 1 - Planning
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: datasets (>=2.3.0)
Requires-Dist: sentence-transformers (>=2.2.1)
Requires-Dist: evaluate (>=0.3.0)
Requires-Dist: huggingface-hub (>=0.13.0)
Requires-Dist: scikit-learn
Provides-Extra: absa
Requires-Dist: spacy ; extra == 'absa'
Provides-Extra: codecarbon
Requires-Dist: codecarbon ; extra == 'codecarbon'
Provides-Extra: compat_tests
Requires-Dist: datasets (==2.3.0) ; extra == 'compat_tests'
Requires-Dist: sentence-transformers (==2.2.1) ; extra == 'compat_tests'
Requires-Dist: evaluate (==0.3.0) ; extra == 'compat_tests'
Requires-Dist: huggingface-hub (==0.13.0) ; extra == 'compat_tests'
Requires-Dist: scikit-learn ; extra == 'compat_tests'
Requires-Dist: pytest ; extra == 'compat_tests'
Requires-Dist: pytest-cov ; extra == 'compat_tests'
Requires-Dist: onnxruntime ; extra == 'compat_tests'
Requires-Dist: onnx ; extra == 'compat_tests'
Requires-Dist: skl2onnx ; extra == 'compat_tests'
Requires-Dist: hummingbird-ml (<0.4.9) ; extra == 'compat_tests'
Requires-Dist: openvino (==2022.3.0) ; extra == 'compat_tests'
Requires-Dist: spacy ; extra == 'compat_tests'
Requires-Dist: pandas (<2) ; extra == 'compat_tests'
Requires-Dist: fsspec (<2023.12.0) ; extra == 'compat_tests'
Provides-Extra: dev
Requires-Dist: openvino (==2022.3.0) ; extra == 'dev'
Requires-Dist: onnx ; extra == 'dev'
Requires-Dist: onnxruntime ; extra == 'dev'
Requires-Dist: tabulate ; extra == 'dev'
Requires-Dist: skl2onnx ; extra == 'dev'
Requires-Dist: hummingbird-ml (<0.4.9) ; extra == 'dev'
Requires-Dist: pytest-cov ; extra == 'dev'
Requires-Dist: spacy ; extra == 'dev'
Requires-Dist: black ; extra == 'dev'
Requires-Dist: hf-doc-builder (>=0.3.0) ; extra == 'dev'
Requires-Dist: codecarbon ; extra == 'dev'
Requires-Dist: optuna ; extra == 'dev'
Requires-Dist: pytest ; extra == 'dev'
Requires-Dist: isort ; extra == 'dev'
Requires-Dist: flake8 ; extra == 'dev'
Provides-Extra: docs
Requires-Dist: hf-doc-builder (>=0.3.0) ; extra == 'docs'
Provides-Extra: onnx
Requires-Dist: onnxruntime ; extra == 'onnx'
Requires-Dist: onnx ; extra == 'onnx'
Requires-Dist: skl2onnx ; extra == 'onnx'
Provides-Extra: openvino
Requires-Dist: onnxruntime ; extra == 'openvino'
Requires-Dist: onnx ; extra == 'openvino'
Requires-Dist: skl2onnx ; extra == 'openvino'
Requires-Dist: hummingbird-ml (<0.4.9) ; extra == 'openvino'
Requires-Dist: openvino (==2022.3.0) ; extra == 'openvino'
Provides-Extra: optuna
Requires-Dist: optuna ; extra == 'optuna'
Provides-Extra: quality
Requires-Dist: black ; extra == 'quality'
Requires-Dist: flake8 ; extra == 'quality'
Requires-Dist: isort ; extra == 'quality'
Requires-Dist: tabulate ; extra == 'quality'
Provides-Extra: tests
Requires-Dist: pytest ; extra == 'tests'
Requires-Dist: pytest-cov ; extra == 'tests'
Requires-Dist: onnxruntime ; extra == 'tests'
Requires-Dist: onnx ; extra == 'tests'
Requires-Dist: skl2onnx ; extra == 'tests'
Requires-Dist: hummingbird-ml (<0.4.9) ; extra == 'tests'
Requires-Dist: openvino (==2022.3.0) ; extra == 'tests'
Requires-Dist: spacy ; extra == 'tests'
<img src="https://raw.githubusercontent.com/huggingface/setfit/main/assets/setfit.png">
<p align="center">
๐ค <a href="https://huggingface.co/setfit" target="_blank">Models & Datasets</a> | ๐ <a href="https://huggingface.co/docs/setfit" target="_blank">Documentation</a> | ๐ <a href="https://huggingface.co/blog/setfit" target="_blank">Blog</a> | ๐ <a href="https://arxiv.org/abs/2209.11055" target="_blank">Paper</a>
</p>
# SetFit - Efficient Few-shot Learning with Sentence Transformers
SetFit is an efficient and prompt-free framework for few-shot fine-tuning of [Sentence Transformers](https://sbert.net/). It achieves high accuracy with little labeled data - for instance, with only 8 labeled examples per class on the Customer Reviews sentiment dataset, SetFit is competitive with fine-tuning RoBERTa Large on the full training set of 3k examples ๐คฏ!
Compared to other few-shot learning methods, SetFit has several unique features:
* ๐ฃ **No prompts or verbalizers:** Current techniques for few-shot fine-tuning require handcrafted prompts or verbalizers to convert examples into a format suitable for the underlying language model. SetFit dispenses with prompts altogether by generating rich embeddings directly from text examples.
* ๐ **Fast to train:** SetFit doesn't require large-scale models like T0 or GPT-3 to achieve high accuracy. As a result, it is typically an order of magnitude (or more) faster to train and run inference with.
* ๐ **Multilingual support**: SetFit can be used with any [Sentence Transformer](https://huggingface.co/models?library=sentence-transformers&sort=downloads) on the Hub, which means you can classify text in multiple languages by simply fine-tuning a multilingual checkpoint.
Check out the [SetFit Documentation](https://huggingface.co/docs/setfit) for more information!
## Installation
Download and install `setfit` by running:
```bash
pip install setfit
```
If you want the bleeding-edge version instead, install from source by running:
```bash
pip install git+https://github.com/huggingface/setfit.git
```
## Usage
The [quickstart](https://huggingface.co/docs/setfit/quickstart) is a good place to learn about training, saving, loading, and performing inference with SetFit models.
For more examples, check out the [`notebooks`](https://github.com/huggingface/setfit/tree/main/notebooks) directory, the [tutorials](https://huggingface.co/docs/setfit/tutorials/overview), or the [how-to guides](https://huggingface.co/docs/setfit/how_to/overview).
### Training a SetFit model
`setfit` is integrated with the [Hugging Face Hub](https://huggingface.co/) and provides two main classes:
* [`SetFitModel`](https://huggingface.co/docs/setfit/reference/main#setfit.SetFitModel): a wrapper that combines a pretrained body from `sentence_transformers` and a classification head from either [`scikit-learn`](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) or [`SetFitHead`](https://huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) (a differentiable head built upon `PyTorch` with similar APIs to `sentence_transformers`).
* [`Trainer`](https://huggingface.co/docs/setfit/reference/trainer#setfit.Trainer): a helper class that wraps the fine-tuning process of SetFit.
Here is a simple end-to-end training example using the default classification head from `scikit-learn`:
```python
from datasets import load_dataset
from setfit import SetFitModel, Trainer, TrainingArguments, sample_dataset
# Load a dataset from the Hugging Face Hub
dataset = load_dataset("sst2")
# Simulate the few-shot regime by sampling 8 examples per class
train_dataset = sample_dataset(dataset["train"], label_column="label", num_samples=8)
eval_dataset = dataset["validation"].select(range(100))
test_dataset = dataset["validation"].select(range(100, len(dataset["validation"])))
# Load a SetFit model from Hub
model = SetFitModel.from_pretrained("sentence-transformers/paraphrase-mpnet-base-v2")
args = TrainingArguments(
batch_size=16,
num_epochs=4,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
trainer = Trainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
metric="accuracy",
column_mapping={"sentence": "text", "label": "label"} # Map dataset columns to text/label expected by trainer
)
# Train and evaluate
trainer.train()
metrics = trainer.evaluate(test_dataset)
print(metrics)
# {'accuracy': 0.8691709844559585}
# Push model to the Hub
trainer.push_to_hub("tomaarsen/setfit-paraphrase-mpnet-base-v2-sst2")
# Download from Hub
model = SetFitModel.from_pretrained("tomaarsen/setfit-paraphrase-mpnet-base-v2-sst2")
# Run inference
preds = model.predict(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐คฎ"])
print(preds)
# tensor([1, 0], dtype=torch.int32)
```
## Reproducing the results from the paper
We provide scripts to reproduce the results for SetFit and various baselines presented in Table 2 of our paper. Check out the setup and training instructions in the [`scripts/`](scripts/) directory.
## Developer installation
To run the code in this project, first create a Python virtual environment using e.g. Conda:
```bash
conda create -n setfit python=3.9 && conda activate setfit
```
Then install the base requirements with:
```bash
pip install -e '.[dev]'
```
This will install mandatory packages for SetFit like `datasets` as well as development packages like `black` and `isort` that we use to ensure consistent code formatting.
### Formatting your code
We use `black` and `isort` to ensure consistent code formatting. After following the installation steps, you can check your code locally by running:
```
make style && make quality
```
## Project structure
```
โโโ LICENSE
โโโ Makefile <- Makefile with commands like `make style` or `make tests`
โโโ README.md <- The top-level README for developers using this project.
โโโ docs <- Documentation source
โโโ notebooks <- Jupyter notebooks.
โโโ final_results <- Model predictions from the paper
โโโ scripts <- Scripts for training and inference
โโโ setup.cfg <- Configuration file to define package metadata
โโโ setup.py <- Make this project pip installable with `pip install -e`
โโโ src <- Source code for SetFit
โโโ tests <- Unit tests
```
## Related work
* [https://github.com/pmbaumgartner/setfit](https://github.com/pmbaumgartner/setfit) - A scikit-learn API version of SetFit.
* [jxpress/setfit-pytorch-lightning](https://github.com/jxpress/setfit-pytorch-lightning) - A PyTorch Lightning implementation of SetFit.
* [davidberenstein1957/spacy-setfit](https://github.com/davidberenstein1957/spacy-setfit) - An easy and intuitive approach to use SetFit in combination with spaCy.
## Citation
```bibtex
@misc{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|