Spaces:
Paused
Paused
File size: 11,517 Bytes
0fdb130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import pandas as pd
import torch
from datasets import Dataset, DatasetDict, load_dataset
from torch.utils.data import Dataset as TorchDataset
from . import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
if TYPE_CHECKING:
from transformers import PreTrainedTokenizerBase
TokenizerOutput = Dict[str, List[int]]
SEEDS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
SAMPLE_SIZES = [2, 4, 8, 16, 32, 64]
def get_templated_dataset(
dataset: Optional[Dataset] = None,
candidate_labels: Optional[List[str]] = None,
reference_dataset: Optional[str] = None,
template: str = "This sentence is {}",
sample_size: int = 2,
text_column: str = "text",
label_column: str = "label",
multi_label: bool = False,
label_names_column: str = "label_text",
) -> Dataset:
"""Create templated examples for a reference dataset or reference labels.
If `candidate_labels` is supplied, use it for generating the templates.
Otherwise, use the labels loaded from `reference_dataset`.
If input Dataset is supplied, add the examples to it, otherwise create a new Dataset.
The input Dataset is assumed to have a text column with the name `text_column` and a
label column with the name `label_column`, which contains one-hot or multi-hot
encoded label sequences.
Args:
dataset (`Dataset`, *optional*): A Dataset to add templated examples to.
candidate_labels (`List[str]`, *optional*): The list of candidate
labels to be fed into the template to construct examples.
reference_dataset (`str`, *optional*): A dataset to take labels
from, if `candidate_labels` is not supplied.
template (`str`, *optional*, defaults to `"This sentence is {}"`): The template
used to turn each label into a synthetic training example. This template
must include a {} for the candidate label to be inserted into the template.
For example, the default template is "This sentence is {}." With the
candidate label "sports", this would produce an example
"This sentence is sports".
sample_size (`int`, *optional*, defaults to 2): The number of examples to make for
each candidate label.
text_column (`str`, *optional*, defaults to `"text"`): The name of the column
containing the text of the examples.
label_column (`str`, *optional*, defaults to `"label"`): The name of the column
in `dataset` containing the labels of the examples.
multi_label (`bool`, *optional*, defaults to `False`): Whether or not multiple
candidate labels can be true.
label_names_column (`str`, *optional*, defaults to "label_text"): The name of the
label column in the `reference_dataset`, to be used in case there is no ClassLabel
feature for the label column.
Returns:
`Dataset`: A copy of the input Dataset with templated examples added.
Raises:
`ValueError`: If the input Dataset is not empty and one or both of the
provided column names are missing.
"""
if dataset is None:
dataset = Dataset.from_dict({})
required_columns = {text_column, label_column}
column_names = set(dataset.column_names)
if column_names:
missing_columns = required_columns.difference(column_names)
if missing_columns:
raise ValueError(f"The following columns are missing from the input dataset: {missing_columns}.")
if bool(reference_dataset) == bool(candidate_labels):
raise ValueError(
"Must supply exactly one of `reference_dataset` or `candidate_labels` to `get_templated_dataset()`!"
)
if candidate_labels is None:
candidate_labels = get_candidate_labels(reference_dataset, label_names_column)
empty_label_vector = [0] * len(candidate_labels)
for label_id, label_name in enumerate(candidate_labels):
label_vector = empty_label_vector.copy()
label_vector[label_id] = 1
example = {
text_column: template.format(label_name),
label_column: label_vector if multi_label else label_id,
}
for _ in range(sample_size):
dataset = dataset.add_item(example)
return dataset
def get_candidate_labels(dataset_name: str, label_names_column: str = "label_text") -> List[str]:
dataset = load_dataset(dataset_name, split="train")
try:
# Extract ClassLabel feature from "label" column
label_features = dataset.features["label"]
# Label names to classify with
candidate_labels = label_features.names
except AttributeError:
# Some datasets on the Hugging Face Hub don't have a ClassLabel feature for the label column.
# In these cases, you should compute the candidate labels manually by first computing the id2label mapping.
# The column with the label names
label_names = dataset.unique(label_names_column)
# The column with the label IDs
label_ids = dataset.unique("label")
# Compute the id2label mapping and sort by label ID
id2label = sorted(zip(label_ids, label_names), key=lambda x: x[0])
candidate_labels = list(map(lambda x: x[1], id2label))
return candidate_labels
def create_samples(df: pd.DataFrame, sample_size: int, seed: int) -> pd.DataFrame:
"""Samples a DataFrame to create an equal number of samples per class (when possible)."""
examples = []
for label in df["label"].unique():
subset = df.query(f"label == {label}")
if len(subset) > sample_size:
examples.append(subset.sample(sample_size, random_state=seed, replace=False))
else:
examples.append(subset)
return pd.concat(examples)
def sample_dataset(dataset: Dataset, label_column: str = "label", num_samples: int = 8, seed: int = 42) -> Dataset:
"""Samples a Dataset to create an equal number of samples per class (when possible)."""
shuffled_dataset = dataset.shuffle(seed=seed)
df = shuffled_dataset.to_pandas()
df = df.groupby(label_column)
# sample num_samples, or at least as much as possible
df = df.apply(lambda x: x.sample(min(num_samples, len(x)), random_state=seed))
df = df.reset_index(drop=True)
all_samples = Dataset.from_pandas(df, features=dataset.features)
return all_samples.shuffle(seed=seed)
def create_fewshot_splits(
dataset: Dataset,
sample_sizes: List[int],
add_data_augmentation: bool = False,
dataset_name: Optional[str] = None,
) -> DatasetDict:
"""Creates training splits from the dataset with an equal number of samples per class (when possible)."""
splits_ds = DatasetDict()
df = dataset.to_pandas()
if add_data_augmentation and dataset_name is None:
raise ValueError(
"If `add_data_augmentation` is True, must supply a `dataset_name` to create_fewshot_splits()!"
)
for sample_size in sample_sizes:
if add_data_augmentation:
augmented_df = get_templated_dataset(reference_dataset=dataset_name, sample_size=sample_size).to_pandas()
for idx, seed in enumerate(SEEDS):
split_df = create_samples(df, sample_size, seed)
if add_data_augmentation:
split_df = pd.concat([split_df, augmented_df], axis=0).sample(frac=1, random_state=seed)
splits_ds[f"train-{sample_size}-{idx}"] = Dataset.from_pandas(split_df, preserve_index=False)
return splits_ds
def create_samples_multilabel(df: pd.DataFrame, sample_size: int, seed: int) -> pd.DataFrame:
"""Samples a DataFrame to create an equal number of samples per class (when possible)."""
examples = []
column_labels = [_col for _col in df.columns.tolist() if _col != "text"]
for label in column_labels:
subset = df.query(f"{label} == 1")
if len(subset) > sample_size:
examples.append(subset.sample(sample_size, random_state=seed, replace=False))
else:
examples.append(subset)
# Dropping duplicates for samples selected multiple times as they have multi labels
return pd.concat(examples).drop_duplicates()
def create_fewshot_splits_multilabel(dataset: Dataset, sample_sizes: List[int]) -> DatasetDict:
"""Creates training splits from the dataset with an equal number of samples per class (when possible)."""
splits_ds = DatasetDict()
df = dataset.to_pandas()
for sample_size in sample_sizes:
for idx, seed in enumerate(SEEDS):
split_df = create_samples_multilabel(df, sample_size, seed)
splits_ds[f"train-{sample_size}-{idx}"] = Dataset.from_pandas(split_df, preserve_index=False)
return splits_ds
class SetFitDataset(TorchDataset):
"""SetFitDataset
A dataset for training the differentiable head on text classification.
Args:
x (`List[str]`):
A list of input data as texts that will be fed into `SetFitModel`.
y (`Union[List[int], List[List[int]]]`):
A list of input data's labels. Can be a nested list for multi-label classification.
tokenizer (`PreTrainedTokenizerBase`):
The tokenizer from `SetFitModel`'s body.
max_length (`int`, defaults to `32`):
The maximum token length a tokenizer can generate.
Will pad or truncate tokens when the number of tokens for a text is either smaller or larger than this value.
"""
def __init__(
self,
x: List[str],
y: Union[List[int], List[List[int]]],
tokenizer: "PreTrainedTokenizerBase",
max_length: int = 32,
) -> None:
assert len(x) == len(y)
self.x = x
self.y = y
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self) -> int:
return len(self.x)
def __getitem__(self, idx: int) -> Tuple[TokenizerOutput, Union[int, List[int]]]:
feature = self.tokenizer(
self.x[idx],
max_length=self.max_length,
padding="max_length",
truncation=True,
return_attention_mask="attention_mask" in self.tokenizer.model_input_names,
return_token_type_ids="token_type_ids" in self.tokenizer.model_input_names,
)
label = self.y[idx]
return feature, label
def collate_fn(self, batch):
features = {input_name: [] for input_name in self.tokenizer.model_input_names}
labels = []
for feature, label in batch:
features["input_ids"].append(feature["input_ids"])
if "attention_mask" in features:
features["attention_mask"].append(feature["attention_mask"])
if "token_type_ids" in features:
features["token_type_ids"].append(feature["token_type_ids"])
labels.append(label)
# convert to tensors
features = {k: torch.Tensor(v).int() for k, v in features.items()}
labels = torch.Tensor(labels)
labels = labels.long() if len(labels.size()) == 1 else labels.float()
return features, labels
|