File size: 11,517 Bytes
0fdb130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union

import pandas as pd
import torch
from datasets import Dataset, DatasetDict, load_dataset
from torch.utils.data import Dataset as TorchDataset

from . import logging


logging.set_verbosity_info()
logger = logging.get_logger(__name__)

if TYPE_CHECKING:
    from transformers import PreTrainedTokenizerBase


TokenizerOutput = Dict[str, List[int]]
SEEDS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
SAMPLE_SIZES = [2, 4, 8, 16, 32, 64]


def get_templated_dataset(

    dataset: Optional[Dataset] = None,

    candidate_labels: Optional[List[str]] = None,

    reference_dataset: Optional[str] = None,

    template: str = "This sentence is {}",

    sample_size: int = 2,

    text_column: str = "text",

    label_column: str = "label",

    multi_label: bool = False,

    label_names_column: str = "label_text",

) -> Dataset:
    """Create templated examples for a reference dataset or reference labels.



    If `candidate_labels` is supplied, use it for generating the templates.

    Otherwise, use the labels loaded from `reference_dataset`.



    If input Dataset is supplied, add the examples to it, otherwise create a new Dataset.

    The input Dataset is assumed to have a text column with the name `text_column` and a

    label column with the name `label_column`, which contains one-hot or multi-hot

    encoded label sequences.



    Args:

        dataset (`Dataset`, *optional*): A Dataset to add templated examples to.

        candidate_labels (`List[str]`, *optional*): The list of candidate

            labels to be fed into the template to construct examples.

        reference_dataset (`str`, *optional*): A dataset to take labels

            from, if `candidate_labels` is not supplied.

        template (`str`, *optional*, defaults to `"This sentence is {}"`): The template

            used to turn each label into a synthetic training example. This template

            must include a {} for the candidate label to be inserted into the template.

            For example, the default template is "This sentence is {}." With the

            candidate label "sports", this would produce an example

            "This sentence is sports".

        sample_size (`int`, *optional*, defaults to 2): The number of examples to make for

            each candidate label.

        text_column (`str`, *optional*, defaults to `"text"`): The name of the column

            containing the text of the examples.

        label_column (`str`, *optional*, defaults to `"label"`): The name of the column

            in `dataset` containing the labels of the examples.

        multi_label (`bool`, *optional*, defaults to `False`): Whether or not multiple

            candidate labels can be true.

        label_names_column (`str`, *optional*, defaults to "label_text"): The name of the

            label column in the `reference_dataset`, to be used in case there is no ClassLabel

            feature for the label column.



    Returns:

        `Dataset`: A copy of the input Dataset with templated examples added.



    Raises:

        `ValueError`: If the input Dataset is not empty and one or both of the

            provided column names are missing.

    """
    if dataset is None:
        dataset = Dataset.from_dict({})

    required_columns = {text_column, label_column}
    column_names = set(dataset.column_names)
    if column_names:
        missing_columns = required_columns.difference(column_names)
        if missing_columns:
            raise ValueError(f"The following columns are missing from the input dataset: {missing_columns}.")

    if bool(reference_dataset) == bool(candidate_labels):
        raise ValueError(
            "Must supply exactly one of `reference_dataset` or `candidate_labels` to `get_templated_dataset()`!"
        )

    if candidate_labels is None:
        candidate_labels = get_candidate_labels(reference_dataset, label_names_column)

    empty_label_vector = [0] * len(candidate_labels)

    for label_id, label_name in enumerate(candidate_labels):
        label_vector = empty_label_vector.copy()
        label_vector[label_id] = 1
        example = {
            text_column: template.format(label_name),
            label_column: label_vector if multi_label else label_id,
        }
        for _ in range(sample_size):
            dataset = dataset.add_item(example)

    return dataset


def get_candidate_labels(dataset_name: str, label_names_column: str = "label_text") -> List[str]:
    dataset = load_dataset(dataset_name, split="train")

    try:
        # Extract ClassLabel feature from "label" column
        label_features = dataset.features["label"]
        # Label names to classify with
        candidate_labels = label_features.names

    except AttributeError:
        # Some datasets on the Hugging Face Hub don't have a ClassLabel feature for the label column.
        # In these cases, you should compute the candidate labels manually by first computing the id2label mapping.

        # The column with the label names
        label_names = dataset.unique(label_names_column)
        # The column with the label IDs
        label_ids = dataset.unique("label")

        # Compute the id2label mapping and sort by label ID
        id2label = sorted(zip(label_ids, label_names), key=lambda x: x[0])

        candidate_labels = list(map(lambda x: x[1], id2label))

    return candidate_labels


def create_samples(df: pd.DataFrame, sample_size: int, seed: int) -> pd.DataFrame:
    """Samples a DataFrame to create an equal number of samples per class (when possible)."""
    examples = []
    for label in df["label"].unique():
        subset = df.query(f"label == {label}")
        if len(subset) > sample_size:
            examples.append(subset.sample(sample_size, random_state=seed, replace=False))
        else:
            examples.append(subset)
    return pd.concat(examples)


def sample_dataset(dataset: Dataset, label_column: str = "label", num_samples: int = 8, seed: int = 42) -> Dataset:
    """Samples a Dataset to create an equal number of samples per class (when possible)."""
    shuffled_dataset = dataset.shuffle(seed=seed)

    df = shuffled_dataset.to_pandas()
    df = df.groupby(label_column)

    # sample num_samples, or at least as much as possible
    df = df.apply(lambda x: x.sample(min(num_samples, len(x)), random_state=seed))
    df = df.reset_index(drop=True)

    all_samples = Dataset.from_pandas(df, features=dataset.features)
    return all_samples.shuffle(seed=seed)


def create_fewshot_splits(

    dataset: Dataset,

    sample_sizes: List[int],

    add_data_augmentation: bool = False,

    dataset_name: Optional[str] = None,

) -> DatasetDict:
    """Creates training splits from the dataset with an equal number of samples per class (when possible)."""
    splits_ds = DatasetDict()
    df = dataset.to_pandas()

    if add_data_augmentation and dataset_name is None:
        raise ValueError(
            "If `add_data_augmentation` is True, must supply a `dataset_name` to create_fewshot_splits()!"
        )

    for sample_size in sample_sizes:
        if add_data_augmentation:
            augmented_df = get_templated_dataset(reference_dataset=dataset_name, sample_size=sample_size).to_pandas()
        for idx, seed in enumerate(SEEDS):
            split_df = create_samples(df, sample_size, seed)
            if add_data_augmentation:
                split_df = pd.concat([split_df, augmented_df], axis=0).sample(frac=1, random_state=seed)
            splits_ds[f"train-{sample_size}-{idx}"] = Dataset.from_pandas(split_df, preserve_index=False)
    return splits_ds


def create_samples_multilabel(df: pd.DataFrame, sample_size: int, seed: int) -> pd.DataFrame:
    """Samples a DataFrame to create an equal number of samples per class (when possible)."""
    examples = []
    column_labels = [_col for _col in df.columns.tolist() if _col != "text"]
    for label in column_labels:
        subset = df.query(f"{label} == 1")
        if len(subset) > sample_size:
            examples.append(subset.sample(sample_size, random_state=seed, replace=False))
        else:
            examples.append(subset)
    # Dropping duplicates for samples selected multiple times as they have multi labels
    return pd.concat(examples).drop_duplicates()


def create_fewshot_splits_multilabel(dataset: Dataset, sample_sizes: List[int]) -> DatasetDict:
    """Creates training splits from the dataset with an equal number of samples per class (when possible)."""
    splits_ds = DatasetDict()
    df = dataset.to_pandas()
    for sample_size in sample_sizes:
        for idx, seed in enumerate(SEEDS):
            split_df = create_samples_multilabel(df, sample_size, seed)
            splits_ds[f"train-{sample_size}-{idx}"] = Dataset.from_pandas(split_df, preserve_index=False)
    return splits_ds


class SetFitDataset(TorchDataset):
    """SetFitDataset



    A dataset for training the differentiable head on text classification.



    Args:

        x (`List[str]`):

            A list of input data as texts that will be fed into `SetFitModel`.

        y (`Union[List[int], List[List[int]]]`):

            A list of input data's labels. Can be a nested list for multi-label classification.

        tokenizer (`PreTrainedTokenizerBase`):

            The tokenizer from `SetFitModel`'s body.

        max_length (`int`, defaults to `32`):

            The maximum token length a tokenizer can generate.

            Will pad or truncate tokens when the number of tokens for a text is either smaller or larger than this value.

    """

    def __init__(

        self,

        x: List[str],

        y: Union[List[int], List[List[int]]],

        tokenizer: "PreTrainedTokenizerBase",

        max_length: int = 32,

    ) -> None:
        assert len(x) == len(y)

        self.x = x
        self.y = y
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self) -> int:
        return len(self.x)

    def __getitem__(self, idx: int) -> Tuple[TokenizerOutput, Union[int, List[int]]]:
        feature = self.tokenizer(
            self.x[idx],
            max_length=self.max_length,
            padding="max_length",
            truncation=True,
            return_attention_mask="attention_mask" in self.tokenizer.model_input_names,
            return_token_type_ids="token_type_ids" in self.tokenizer.model_input_names,
        )
        label = self.y[idx]

        return feature, label

    def collate_fn(self, batch):
        features = {input_name: [] for input_name in self.tokenizer.model_input_names}

        labels = []
        for feature, label in batch:
            features["input_ids"].append(feature["input_ids"])
            if "attention_mask" in features:
                features["attention_mask"].append(feature["attention_mask"])
            if "token_type_ids" in features:
                features["token_type_ids"].append(feature["token_type_ids"])
            labels.append(label)

        # convert to tensors
        features = {k: torch.Tensor(v).int() for k, v in features.items()}
        labels = torch.Tensor(labels)
        labels = labels.long() if len(labels.size()) == 1 else labels.float()
        return features, labels