File size: 33,495 Bytes
b66f230
 
 
 
8e9c817
 
 
 
 
 
 
 
 
 
b35e51f
e576387
23ee797
658f16d
f3684c5
97092f5
b66f230
 
 
 
 
23ee797
23931c3
 
b66f230
 
 
1dad510
b66f230
1dad510
b66f230
 
ff6fff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20d80fe
 
 
e0ba174
 
 
23ee797
6362604
23ee797
 
 
 
 
 
 
 
 
 
3860f94
23ee797
 
 
 
 
 
e0ba174
23ee797
e0ba174
23ee797
 
 
 
 
3860f94
23ee797
 
 
 
 
 
e0ba174
822c3a6
 
 
 
e0ba174
23ee797
 
 
 
 
 
97092f5
 
ec6e1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b66f230
 
1dad510
934ac05
ec6e1e5
 
 
6bae7e8
07fde84
32a069d
ec6e1e5
 
b66f230
ec6e1e5
1c921ec
8bfc448
b299ccd
1fc0ff9
911ea92
b299ccd
32a069d
 
 
b299ccd
 
ec6e1e5
97092f5
b66f230
6656d82
b299ccd
6656d82
b66f230
 
b299ccd
 
 
 
 
 
 
ec6e1e5
b299ccd
 
1fc0ff9
ec6e1e5
3daddec
1fc0ff9
32a069d
 
1fc0ff9
 
32a069d
1fc0ff9
6874981
 
 
 
 
 
 
32a069d
6874981
 
 
 
 
2e909a5
6874981
32a069d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b66f230
 
b299ccd
 
 
 
 
 
 
b66f230
6bae7e8
bc7f740
 
 
 
 
6bae7e8
bc7f740
6bae7e8
 
 
 
 
 
 
 
bc7f740
d0e7a00
bc7f740
6bae7e8
 
 
 
 
 
bc7f740
 
 
b66f230
 
b299ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b66f230
f03ebc5
 
 
 
 
 
 
 
f69c211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61e97bd
 
 
 
f69c211
 
 
 
 
61e97bd
f69c211
4123571
f69c211
 
4123571
f69c211
 
 
4123571
 
b66f230
edb55ca
188002f
39ce08a
 
 
3bf4a90
39ce08a
3bf4a90
39ce08a
 
 
 
a425d37
8c3991f
6874981
 
 
 
8c3991f
 
 
 
 
 
 
8bfc448
2ddb0f5
5409a8a
8c3991f
 
 
7e24376
 
78879a4
 
bf47515
3bf4a90
8c3991f
2ddb0f5
 
07fde84
 
20d80fe
2ddb0f5
 
8c3991f
 
 
 
 
2ddb0f5
8c3991f
 
2ddb0f5
8c3991f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188002f
8c3991f
 
32a069d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97092f5
1fc0ff9
 
 
4a56366
1fc0ff9
 
 
 
ec6e1e5
 
 
b66f230
ec6e1e5
 
 
 
 
8bfc448
ec6e1e5
 
 
 
b66f230
8bfc448
658f16d
ec6e1e5
 
 
 
 
 
 
f0196fa
ec6e1e5
 
 
 
 
 
 
 
 
78879a4
ec6e1e5
 
 
 
 
 
 
 
 
 
7bc6ac3
ec6e1e5
 
 
f0196fa
ec6e1e5
 
 
 
 
 
 
 
 
 
 
07fde84
 
20d80fe
a0fa84e
ec6e1e5
 
 
 
 
 
 
 
 
 
 
f0196fa
ec6e1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2be8bdf
 
 
 
ec6e1e5
 
 
 
 
 
 
 
 
 
 
b66f230
b35e51f
ec6e1e5
 
 
 
 
 
23ee797
ec6e1e5
 
23ee797
ec6e1e5
 
 
 
 
 
 
 
 
 
91b9cf7
ec6e1e5
 
 
6196b87
ec6e1e5
 
 
 
 
 
 
 
 
 
 
78879a4
 
ec6e1e5
 
 
b176fe0
b66f230
 
52f1ee8
 
 
 
 
 
 
 
090213e
52f1ee8
7474e5d
52f1ee8
090213e
52f1ee8
090213e
52f1ee8
b35e51f
 
658f16d
b35e51f
 
 
 
 
 
d8f2525
b35e51f
 
 
 
 
 
 
 
 
 
 
 
658f16d
 
 
97092f5
b66f230
 
b35e51f
b66f230
b35e51f
 
 
 
 
 
 
e576387
 
b66f230
219886f
b35e51f
97092f5
 
 
b176fe0
f6916e3
97092f5
 
 
b176fe0
97092f5
 
 
b66f230
 
97092f5
 
 
 
3d0b427
 
97092f5
 
b299ccd
23931c3
3d0b427
 
 
 
934ac05
 
3d0b427
 
 
 
 
b299ccd
 
 
 
3d0b427
 
 
 
934ac05
 
3d0b427
 
 
23931c3
952f194
 
 
 
8bfc448
952f194
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
import copy
import glob
import json
import os
# Necessary for `requests`. Without set correct path or empty string it fails during process HTTPS connection with this: [Errno 101] Network is unreachable
if os.path.exists("/etc/ssl/certs/ca-certificates.crt"):
    os.environ["CURL_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt"
    os.environ["REQUESTS_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt"
else:
    os.environ["CURL_CA_BUNDLE"] = ""
    os.environ["REQUESTS_CA_BUNDLE"] = ""
print(f"{os.environ.get('CURL_CA_BUNDLE') = }")
print(f"{os.environ.get('REQUESTS_CA_BUNDLE') = }")

import hashlib
import time
import requests
from collections import namedtuple
from xml.sax.saxutils import escape as xmlEscape, quoteattr as xmlQuoteAttr
from threading import Lock

import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, snapshot_download

from compare_significance import SUPPORTED_METRICS

VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"]

api = HfApi()

HF_RESULTS_DATASET = os.environ.get("HF_RESULTS_DATASET")  # <HF_RESULTS_DATASET> ::= <owner> "/" <dataset name>; e.g. CZLC/LLM_benchmark_data
HF_TOKEN = os.environ.get("HF_TOKEN")

TASKS_METADATA_PATH = "./tasks_metadata.json"

MARKDOWN_SPECIAL_CHARACTERS = {
    "#": "&#35;",  # for usage in xml.sax.saxutils.escape as entities must be first
    "\\": "&#92;",
    "`": "&#96;",
    "*": "&#42;",
    "_": "&#95;",
    "{": "&#123;",
    "}": "&#125;",
    "[": "&#91;",
    "]": "&#93;",
    "(": "&#40;",
    ")": "&#41;",
    "+": "&#43;",
    "-": "&#45;",
    ".": "&#46;",
    "!": "&#33;",
    "=": "&#61;",
    "|": "&#124;"
}

def xmlAndMarkdownEscape(text):
    return xmlEscape(text, MARKDOWN_SPECIAL_CHARACTERS)

class CheckSignificanceError(Exception):
    pass

def check_significance_send_task(model_a_path, model_b_path):
    url = 'https://czechllm.fit.vutbr.cz/benczechmark-leaderboard/compare_significance/'

    # prepare and send request
    with (
        open(model_a_path, 'rb') as model_a_fp,
        open(model_b_path, 'rb') as model_b_fp,
    ):
        files = {
            'model_a': model_a_fp,
            'model_b': model_b_fp,
        }
        response = requests.post(url, files=files, timeout=60 * 5)

    # check response
    if response.status_code == 202:
        result_url = response.url
        #task_id = response.json()['task_id']
    elif response.status_code == 429:
        raise CheckSignificanceError('Server is too busy. Please try again later.')
    else:
        raise CheckSignificanceError(f'Failed to submit task. Status code: {response.status_code}')

    return result_url

def check_significance_wait_for_result(result_url):
    while True:
        response = requests.get(result_url, timeout=60 * 5)
        if response.status_code == 200:
            result = response.json()
            break
        elif response.status_code == 202:
            time.sleep(5)
        else:
            raise CheckSignificanceError(f'Failed to get result. Status code: {response.status_code}')

    if result["state"] == "COMPLETED":
        return result['result']
    else:
        raise CheckSignificanceError(result['result']['error'])

def check_significance(model_a_path, model_b_path):
    result_url = check_significance_send_task(model_a_path, model_b_path)
    result = check_significance_wait_for_result(result_url)
    return result

pre_submit_lock = Lock()

class _ReadLock:
    def __init__(self, lock):
       self._lock = lock
       self.reading = 0
    
    def __enter__(self):
        with self._lock:
            self.reading += 1
    
    def __exit__(self, exc_type, exc_value, traceback):
        with self._lock:
            self.reading -= 1

class ReadWriteLock:
    """
    Zámek, který ověří, že nikdo nečte když se zapisuje a že zapisuje pouze jeden
    """
    
    def __init__(self):
       self._lock = Lock()
       self.ro = _ReadLock(self._lock)
       self.rw = self
    
    def __enter__(self):
        self._lock.acquire()
        while True:
            reading = self.ro.reading
            if reading > 0:
                self._lock.release()
                time.sleep(1)
                self._lock.acquire()
            elif reading < 0:
                self._lock.release()
                raise RuntimeError()
            else:
                return
    
    def __exit__(self, exc_type, exc_value, traceback):
        self._lock.release()

class LeaderboardServer:
    def __init__(self):
        self.SERVER_ADDRESS = HF_RESULTS_DATASET
        self.REPO_TYPE = "dataset"
        self.TASKS_METADATA = json.load(open(TASKS_METADATA_PATH))
        self.TASKS_CATEGORIES = {self.TASKS_METADATA[task]["category"] for task in self.TASKS_METADATA}
        self.TASKS_CATEGORY_OVERALL = "Overall"
        self.CATEGORY_TO_TASK_ABBREVIATION_TO_DETAILS = self._prepare_category_to_task_abbr_to_details()
        self.MAX_LENGTH_OF_MODEL_TITLE = 28
        self.DIR_DATAFRAMES_CSV = "./dataframes_csv"
        
        self.var_lock = ReadWriteLock()
        self.submission_ids = set()
        self.submission_id_to_file = {}  # Map submission ids to file paths
        self.submission_id_to_model_title = {}
        self.submission_id_to_data = {}  # Only data (results and metadata) using by leaderboard
        self.tournament_results = None
        self.leaderboard_dataframes = {}  # For each category
        self.tournament_dataframes = {}  # For each submission_id and category
        
        self.leaderboard_dataframes_csv = {}  # For each category
        self.tournament_dataframes_csv = {}  # For each submission_id and category
        
        self.results_dataset_local_snapshot_lock = ReadWriteLock()
        self.results_dataset_local_snapshot = None
        
        self.pre_submit_lock = pre_submit_lock
        self.pre_submit = None
        
        self.update_leaderboard()
        self.results_dataset_integrity_check()  # Check integrity of the results dataset after (re)start Hugging Face Space

    def update_leaderboard(self):
        with self.results_dataset_local_snapshot_lock.rw:
            self.results_dataset_local_snapshot = snapshot_download(
                self.SERVER_ADDRESS,
                repo_type=self.REPO_TYPE,
                token=HF_TOKEN,
                local_dir="./",
            )
        
        self.fetch_existing_models()
        
        tournament_results = self.load_tournament_results()
        with self.var_lock.rw:
            self.tournament_results = tournament_results
        
        categories = [self.TASKS_CATEGORY_OVERALL] + sorted(self.TASKS_CATEGORIES)
        
        leaderboard_dataframes = {
            category: self._get_leaderboard(category=category)
            for category in categories
        }
        
        with self.var_lock.ro:
            submission_ids = self.submission_ids
        
        tournament_dataframes = {
            submission_id: {
                category: self._get_model_tournament_table(submission_id, category)
                for category in categories
            }
            for submission_id in submission_ids
        }
        
        with self.var_lock.rw:
            self.leaderboard_dataframes = leaderboard_dataframes
            self.tournament_dataframes = tournament_dataframes
        
        leaderboard_dataframes_csv = {
            category: self._dataframe_to_csv(self.get_leaderboard(category=category), f"Leaderboard - {category}.csv")
            for category in categories
        }
        
        with self.var_lock.ro:
            tournament_dataframes_csv = {
                submission_id: {
                    category: self._dataframe_to_csv(
                        self.get_model_tournament_table(submission_id, category).data,
                        f"Tournament table - {self.submission_id_to_data[submission_id]['metadata']['model_name'][:self.MAX_LENGTH_OF_MODEL_TITLE]} - {category}.csv",
                    )
                    for category in sorted(self.TASKS_CATEGORIES)
                }
                for submission_id in submission_ids
            }
        
        with self.var_lock.rw:
            self.leaderboard_dataframes_csv = leaderboard_dataframes_csv
            self.tournament_dataframes_csv = tournament_dataframes_csv

    def load_tournament_results(self):
        with self.results_dataset_local_snapshot_lock.ro:
            metadata_rank_paths = os.path.join(self.results_dataset_local_snapshot, "tournament.json")
            if not os.path.exists(metadata_rank_paths):
                return {}
            with open(metadata_rank_paths) as ranks_file:
                results = json.load(ranks_file)
            return results

    def _prepare_category_to_task_abbr_to_details(self):
        tasks_per_category = {}
        for task in self.TASKS_METADATA:
            task_category = self.TASKS_METADATA[task]["category"]
            tasks_per_category.setdefault(task_category, list()).append(task)
        
        category2abbreviation2name = {self.TASKS_CATEGORY_OVERALL: {}}
        for category, tasks in tasks_per_category.items():
            abbreviation2name = {
                self.TASKS_METADATA[t]["abbreviation"]: (
                    self.TASKS_METADATA[t]["abbreviation"],
                    self.TASKS_METADATA[t]["name"],
                    self.TASKS_METADATA[t]["source_url"],
                )
                for t in tasks
            }
            sorted_abbreviation2name = dict.fromkeys(sorted(abbreviation2name.keys()))
            sorted_abbreviation2name.update(abbreviation2name)
            category2abbreviation2name[category] = sorted_abbreviation2name
            category2abbreviation2name[self.TASKS_CATEGORY_OVERALL].update(sorted_abbreviation2name)
        
        abbreviation2name = category2abbreviation2name[self.TASKS_CATEGORY_OVERALL]
        sorted_abbreviation2name = dict.fromkeys(sorted(abbreviation2name.keys()))
        sorted_abbreviation2name.update(abbreviation2name)
        category2abbreviation2name[self.TASKS_CATEGORY_OVERALL] = sorted_abbreviation2name
        
        return category2abbreviation2name

    def fetch_existing_models(self):
        # Models data
        submission_ids = set()
        submission_id_to_file = {}
        submission_id_to_model_title = {}
        submission_id_to_data = {}
        
        with self.results_dataset_local_snapshot_lock.ro:
            for submission_file in glob.glob(os.path.join(self.results_dataset_local_snapshot, "data") + "/*.json"):
                data = json.load(open(submission_file))
                metadata = data.get('metadata')
                if metadata is None:
                    continue
                submission_id = metadata["submission_id"]
                
                submission_ids.add(submission_id)
                submission_id_to_file[submission_id] = submission_file
                submission_id_to_model_title[submission_id] = metadata["team_name"] + "/" + metadata["model_name"]
                submission_id_to_data[submission_id] = {"results": data["results"], "metadata": metadata}
        
        with self.var_lock.rw:
            self.submission_ids = submission_ids
            self.submission_id_to_file = submission_id_to_file
            self.submission_id_to_model_title = submission_id_to_model_title
            self.submission_id_to_data = submission_id_to_data

    def results_dataset_integrity_check(self):
        """
        Zkontroluje, že:
        - všechny modely byly v duelu se všemi
        -- pokud ne, znemožní potvrzení nových submitů a udělá zbývající zápasy
        -- kontroluje soubory v adresáři "/data" a soubor "tournament.json"
        - v souboru "tournament.json" není `submission_id`, které by nemělo soubor v adresáři "/data"
        """
        
        while True:
            with self.pre_submit_lock:
                if self.pre_submit == None:
                    gr.Info('Checking integrity...', duration=15)
                    self.update_leaderboard()
                    
                    with self.var_lock.ro:
                        # Is every `submission_id` in results known?
                        if self.tournament_results.keys() - self.submission_ids != set():
                            pass
                        # Was every `submission_id` in some match?
                        elif self.submission_ids - self.tournament_results.keys() != set():
                            pass
                        # Are all competitors known?
                        elif any(
                            self.tournament_results[submission_id].keys() - self.submission_ids != set()
                            for submission_id in self.submission_ids
                        ):
                            pass
                        # Has had every `submission_id` match with all competitors?
                        elif any(
                            self.submission_ids - self.tournament_results[submission_id].keys() != set()
                            for submission_id in self.submission_ids
                        ):
                            pass
                        else:
                            break

                    gr.Info('Running tournament...', duration=15)
                    with self.var_lock.rw:
                        self.tournament_results = {}
                        submission_ids_backup = self.submission_ids
                        self.submission_ids = set()
                    for submission_id in submission_ids_backup:
                        with self.var_lock.ro:
                            file = self.submission_id_to_file[submission_id]
                            tournament_results = self.start_tournament(submission_id, file)
                        with self.var_lock.rw:
                            self.tournament_results = tournament_results
                            self.submission_ids.add(submission_id)
                    
                    gr.Info('Uploading tournament results...', duration=5)
                    if self.tournament_results:
                        self._upload_tournament_results(self.tournament_results)
                    
                    break
            gr.Info("Waiting in queue...", duration=5)
            time.sleep(10)
        
        gr.Info('Integrity of the results dataset is checked', duration=5)

    @staticmethod
    def _model_tournament_table_highlight_true_and_false(x):
        df_css = x.copy()
        for c in df_css:
          for i in range(len(df_css.index)):
            if x[c].iloc[i] == True or ">true<" in str(x[c].iloc[i]).lower():
              df_css[c].iloc[i] = 'background-color: rgba(0, 255, 0, 0.1);'
            elif x[c].iloc[i] == False or ">false<" in str(x[c].iloc[i]).lower():
              df_css[c].iloc[i] = 'background-color: rgba(255, 0, 0, 0.1);'
            else:
              df_css[c].iloc[i] = ''
        return df_css 

    def get_model_tournament_table(self, submission_id, category):
        with self.var_lock.ro:
            return copy.copy(self.tournament_dataframes[submission_id][category])

    def _get_model_tournament_table(self, submission_id, category):
        if category == self.TASKS_CATEGORY_OVERALL:
            return None
        
        model_tournament_table = []
        
        with self.var_lock.ro:
            for competitor_id in self.tournament_results[submission_id].keys() - {submission_id}: # without self
                data = self.submission_id_to_data[competitor_id]
                
                match_results = {}
                for task in self.tournament_results[submission_id][competitor_id]:
                    task_category = self.TASKS_METADATA[task]["category"]
                    if task_category == category:
                        match_task_result_details = dict.fromkeys(["significant", "p_value"])  # order has impact to sorting DataFrame
                        match_task_result_details.update(copy.deepcopy(self.tournament_results[submission_id][competitor_id][task]))
                        match_task_result_details["significant"] = str(match_task_result_details["significant"]).lower()  # originaly bool
                        match_task_result_significant = match_task_result_details["significant"]
                        match_task_result_details = "\n".join(f"{k}: {v}" for k, v in match_task_result_details.items())
                        match_results[task] = f'<abbr title={xmlQuoteAttr(match_task_result_details)}>{match_task_result_significant}</abbr>'
                
                model_link = data["metadata"]["link_to_model"]
                model_title = data["metadata"]["team_name"] + "/" + data["metadata"]["model_name"]
                model_title_abbr_team_name = self.abbreviate(data["metadata"]["team_name"], self.MAX_LENGTH_OF_MODEL_TITLE)
                model_title_abbr_model_name = self.abbreviate(data["metadata"]["model_name"], self.MAX_LENGTH_OF_MODEL_TITLE)
                model_title_abbr_html = f'<div style="font-size: 10px;">{xmlAndMarkdownEscape(model_title_abbr_team_name)}</div>{xmlAndMarkdownEscape(model_title_abbr_model_name)}'
                match_results["model"] = f'<a href={xmlQuoteAttr(model_link)} title={xmlQuoteAttr(model_title)}>{model_title_abbr_html}</a>'
                
                model_tournament_table.append(match_results)
            
            dataframe = pd.DataFrame.from_records(model_tournament_table)
            
            extra_attributes_map_word_to_header = {
                "model": "Competitor",
            }
            first_attributes = [
                "model",
            ]
            df_order = [
                key
                for key in dict.fromkeys(
                    first_attributes
                    + sorted(
                        list(self.TASKS_METADATA.keys())
                        + list(dataframe.columns)
                    )
                ).keys()
                if key in dataframe.columns
            ]
            dataframe = dataframe[df_order]
            attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.TASKS_METADATA.items()}
            attributes_map_word_to_header.update(extra_attributes_map_word_to_header)
            dataframe = dataframe.rename(
                columns=attributes_map_word_to_header
            )
            dataframe = dataframe.style.apply(self._model_tournament_table_highlight_true_and_false, axis=None)
            return dataframe

    def _dataframe_to_csv(self, dataframe, filename):
        try:
            if not os.path.isdir(self.DIR_DATAFRAMES_CSV):
                os.mkdir(self.DIR_DATAFRAMES_CSV)
        except FileExistsError:
            pass
        
        filepath = os.path.join(self.DIR_DATAFRAMES_CSV, filename)
        dataframe.to_csv(filepath)
        return filepath

    def get_leaderboard_csv(self, category=None):
        category = category if category else self.TASKS_CATEGORY_OVERALL
        with self.var_lock.ro:
            return self.leaderboard_dataframes_csv[category]

    def get_leaderboard(self, pre_submit=None, category=None):
        if pre_submit == None:
            category = category if category else self.TASKS_CATEGORY_OVERALL
            with self.var_lock.ro:
                return copy.copy(self.leaderboard_dataframes[category])
        else:
            return self._get_leaderboard(pre_submit=pre_submit, category=category)

    def _get_leaderboard(self, pre_submit=None, category=None):
        with self.var_lock.ro:
            tournament_results = pre_submit.tournament_results if pre_submit else self.tournament_results
            category = category if category else self.TASKS_CATEGORY_OVERALL

            if len(tournament_results) == 0:
                return pd.DataFrame(columns=['No submissions yet'])
            else:
                processed_results = []
                for submission_id in tournament_results.keys():
                    if submission_id not in self.submission_id_to_data:
                        if pre_submit and submission_id == pre_submit.submission_id:
                            data = json.load(open(pre_submit.file))
                        else:
                            raise gr.Error(f"Internal error: Submission [{submission_id}] not found")
                    else:
                        data = self.submission_id_to_data[submission_id]
                    
                    if submission_id != data["metadata"]["submission_id"]:
                        raise gr.Error(f"Proper submission [{submission_id}] not found")

                    local_results = {}
                    win_score = {}
                    visible_metrics_map_word_to_header = {}
                    for task in self.TASKS_METADATA.keys():
                        
                        task_category = self.TASKS_METADATA[task]["category"]
                        if category not in (self.TASKS_CATEGORY_OVERALL, task_category):
                            continue
                        else:
                            # tournament_results
                            num_of_competitors = 0
                            num_of_wins = 0
                            for competitor_id in tournament_results[submission_id].keys() - {submission_id}: # without self
                                num_of_competitors += 1
                                if tournament_results[submission_id][competitor_id][task]["significant"]:
                                    num_of_wins += 1
                            task_score = num_of_wins / num_of_competitors * 100 if num_of_competitors > 0 else 100
                            win_score.setdefault(task_category, []).append(task_score)
                            
                            if category == task_category:
                                local_results[task] = task_score
                                for metric in VISIBLE_METRICS:
                                    visible_metrics_map_word_to_header[task + "_" + metric] = self.TASKS_METADATA[task]["abbreviation"] + " " + metric
                                    metric_value = data['results'][task].get(metric)
                                    if metric_value is not None:
                                        local_results[task + "_" + metric] = metric_value if metric == "word_perplexity" else metric_value * 100
                                        break  # Only the first metric of every task
                    
                    
                    for c in win_score:
                        win_score[c] = sum(win_score[c]) / len(win_score[c])
                    
                    if category == self.TASKS_CATEGORY_OVERALL:
                        for c in win_score:
                            local_results[c] = win_score[c]
                        local_results["average_score"] = sum(win_score.values()) / len(win_score)
                    else:
                        local_results["average_score"] = win_score[category]
                    
                    model_link = data["metadata"]["link_to_model"]
                    model_title = data["metadata"]["team_name"] + "/" + data["metadata"]["model_name"]
                    model_title_abbr_team_name = self.abbreviate(data["metadata"]["team_name"], self.MAX_LENGTH_OF_MODEL_TITLE)
                    model_title_abbr_model_name = self.abbreviate(data["metadata"]["model_name"], self.MAX_LENGTH_OF_MODEL_TITLE)
                    model_title_abbr_html = f'<div style="font-size: 10px;">{xmlAndMarkdownEscape(model_title_abbr_team_name)}</div>{xmlAndMarkdownEscape(model_title_abbr_model_name)}'
                    local_results["model"] = f'<a href={xmlQuoteAttr(model_link)} title={xmlQuoteAttr(model_title)}>{model_title_abbr_html}</a>'
                    release = data["metadata"].get("submission_timestamp")
                    release = time.strftime("%Y-%m-%d", time.gmtime(release)) if release else "N/A"
                    local_results["release"] = release
                    local_results["model_type"] = data["metadata"]["model_type"]
                    local_results["parameters"] = data["metadata"]["parameters"]
                    
                    if pre_submit and submission_id == pre_submit.submission_id:
                        processed_results.insert(0, local_results)
                    else:
                        processed_results.append(local_results)
                dataframe = pd.DataFrame.from_records(processed_results)
                
                extra_attributes_map_word_to_header = {
                    "model": "Model",
                    "release": "Release",
                    "average_score": "Average ⬆️",
                    "team_name": "Team name",
                    "model_name": "Model name",
                    "model_type": "Type",
                    "parameters": "# θ (B)",
                    "input_length": "Input length (# tokens)",
                    "precision": "Precision",
                    "description": "Description",
                    "link_to_model": "Link to model"
                }
                first_attributes = [
                    "model",
                    "release",
                    "model_type",
                    "parameters",
                    "average_score",
                ]
                df_order = [
                    key
                    for key in dict.fromkeys(
                        first_attributes
                        + sorted(
                            list(self.TASKS_METADATA.keys())
                            + list(dataframe.columns)
                        )
                    ).keys()
                    if key in dataframe.columns
                ]
                dataframe = dataframe[df_order]
                attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.TASKS_METADATA.items()}
                attributes_map_word_to_header.update(extra_attributes_map_word_to_header)
                attributes_map_word_to_header.update(visible_metrics_map_word_to_header)
                dataframe = dataframe.rename(
                    columns=attributes_map_word_to_header
                )
                return dataframe

    def start_tournament(self, new_submission_id, new_model_file):
        with self.var_lock.ro:
            new_tournament = copy.deepcopy(self.tournament_results)
            new_tournament[new_submission_id] = {}
            new_tournament[new_submission_id][new_submission_id] = {
                task: False for task in self.TASKS_METADATA.keys()
            }
            
            rest_of_competitors = list(self.submission_ids - {new_submission_id})  # without self
            num_of_competitors = len(rest_of_competitors)
            
            result_url = {}
            result_inverse_url = {}
            
            while rest_of_competitors:
                next_competitors = []
                while rest_of_competitors:
                    if len(next_competitors) < 5:  # 5*2==10 tasks
                        next_competitors.append(rest_of_competitors.pop())
                    else:
                        break
                
                for competitor_id in next_competitors:
                    result_url[competitor_id] = check_significance_send_task(new_model_file, self.submission_id_to_file[competitor_id])
                    result_inverse_url[competitor_id] = check_significance_send_task(self.submission_id_to_file[competitor_id], new_model_file)
                
                while next_competitors:
                    competitor_id = next_competitors.pop(0)
                    result = check_significance_wait_for_result(result_url.pop(competitor_id))
                    result_inverse = check_significance_wait_for_result(result_inverse_url.pop(competitor_id))
                    
                    if rest_of_competitors:
                        new_competitor_id = rest_of_competitors.pop()
                        next_competitors.append(new_competitor_id)
                        result_url[new_competitor_id] = check_significance_send_task(new_model_file, self.submission_id_to_file[new_competitor_id])
                        result_inverse_url[new_competitor_id] = check_significance_send_task(self.submission_id_to_file[new_competitor_id], new_model_file)
                    
                    new_tournament[new_submission_id][competitor_id] = result
                    new_tournament[competitor_id][new_submission_id] = result_inverse
                    
                    num_of_competitors_done = num_of_competitors - len(next_competitors) - len(rest_of_competitors)
                    gr.Info(f"Tournament: {num_of_competitors_done}/{num_of_competitors} = {(num_of_competitors_done) * 100 // num_of_competitors}% done")
        
        return new_tournament

    @staticmethod
    def abbreviate(s, max_length, dots_place="center"):
        if len(s) <= max_length:
            return s
        else:
            if max_length <= 1:
                return "…"
            elif dots_place == "begin":
                return "…" + s[-max_length + 1:].lstrip()
            elif dots_place == "center" and max_length >= 3:
                max_length_begin = max_length // 2
                max_length_end = max_length - max_length_begin - 1
                return s[:max_length_begin].rstrip() + "…" + s[-max_length_end:].lstrip()
            else:  # dots_place == "end"
                return s[:max_length - 1].rstrip() + "…"

    @staticmethod
    def create_submission_id(metadata):
        # Délka ID musí být omezena, protože se používá v názvu souboru
        submission_id = "_".join([metadata[key][:7] for key in (
            "team_name",
            "model_name",
            "model_predictions_sha256",
            "model_results_sha256",
        )])
        submission_id = submission_id.replace("/", "_").replace("\n", "_").strip()
        return submission_id

    @staticmethod
    def get_sha256_hexdigest(obj):
        data = json.dumps(
            obj,
            separators=(',', ':'),
            sort_keys=True,
            ensure_ascii=True,
        ).encode()
        result = hashlib.sha256(data).hexdigest()
        return result
    
    PreSubmit = namedtuple('PreSubmit', 'tournament_results, submission_id, file')
    
    def prepare_model_for_submission(self, file, metadata) -> PreSubmit:
        with open(file, "r") as f:
            data = json.load(f)
        
        data["metadata"] = metadata
        
        metadata["model_predictions_sha256"] = self.get_sha256_hexdigest(data["predictions"])
        metadata["model_results_sha256"] = self.get_sha256_hexdigest(data["results"])
        
        submission_id = self.create_submission_id(metadata)
        metadata["submission_id"] = submission_id
        
        metadata["submission_timestamp"] = time.time()  # timestamp
        
        with open(file, "w") as f:
            json.dump(data, f, separators=(',', ':'))  # compact JSON
        
        while True:
            with self.pre_submit_lock:
                if self.pre_submit == None:
                    gr.Info('Running tournament...', duration=15)
                    self.update_leaderboard()
                    tournament_results = self.start_tournament(submission_id, file)
                    self.pre_submit = self.PreSubmit(tournament_results, submission_id, file)
                    break
            gr.Info("Waiting in queue...", duration=5)
            time.sleep(10)
        
        return self.pre_submit

    def save_pre_submit(self):
        with self.pre_submit_lock:
            if self.pre_submit:
                tournament_results, submission_id, file = self.pre_submit
                
                self._upload_submission(submission_id, file)
                self._upload_tournament_results(tournament_results)
                
                self.pre_submit = None
                self.update_leaderboard()

    def _upload_submission(self, submission_id, file):
        api.upload_file(
            path_or_fileobj=file,
            path_in_repo=f"data/{submission_id}.json",
            repo_id=self.SERVER_ADDRESS,
            repo_type=self.REPO_TYPE,
            token=HF_TOKEN,
        )

    def _upload_tournament_results(self, tournament_results):
        # Temporary save tournament results
        with self.results_dataset_local_snapshot_lock.rw:
            tournament_results_path = os.path.join(self.results_dataset_local_snapshot, "tournament.json")
            with open(tournament_results_path, "w") as f:
                json.dump(tournament_results, f, sort_keys=True, indent=2)  # readable JSON

        api.upload_file(
            path_or_fileobj=tournament_results_path,
            path_in_repo="tournament.json",
            repo_id=self.SERVER_ADDRESS,
            repo_type=self.REPO_TYPE,
            token=HF_TOKEN,
        )

    def get_model_detail(self, submission_id):
        with self.var_lock.ro:
            if submission_id not in self.submission_id_to_data:
                raise gr.Error(f"Submission [{submission_id}] not found")
            else:
                data = self.submission_id_to_data[submission_id]
                return data["metadata"]