Spaces:
Runtime error
Runtime error
File size: 19,538 Bytes
ba880ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
import time
import os
import random
import json
import pickle
import numpy as np
from tqdm import tqdm
from termcolor import colored
from program_translator import ProgramTranslator #
from config import config
# Print bold tex
def bold(txt):
return colored(str(txt), attrs=["bold"])
# Print bold and colored text
def bcolored(txt, color):
return colored(str(txt), color, attrs=["bold"])
# Write a line to file
def writeline(f, line):
f.write(str(line) + "\n")
# Write a list to file
def writelist(f, l):
writeline(f, ",".join(map(str, l)))
# 2d list to numpy
def vectorize2DList(items, minX=0, minY=0, dtype=np.int):
maxX = max(len(items), minX)
maxY = max([len(item) for item in items] + [minY])
t = np.zeros((maxX, maxY), dtype=dtype)
tLengths = np.zeros((maxX,), dtype=np.int)
for i, item in enumerate(items):
t[i, 0:len(item)] = np.array(item, dtype=dtype)
tLengths[i] = len(item)
return t, tLengths
# 3d list to numpy
def vectorize3DList(items, minX=0, minY=0, minZ=0, dtype=np.int):
maxX = max(len(items), minX)
maxY = max([len(item) for item in items] + [minY])
maxZ = max([len(subitem) for item in items for subitem in item] + [minZ])
t = np.zeros((maxX, maxY, maxZ), dtype=dtype)
tLengths = np.zeros((maxX, maxY), dtype=np.int)
for i, item in enumerate(items):
for j, subitem in enumerate(item):
t[i, j, 0:len(subitem)] = np.array(subitem, dtype=dtype)
tLengths[i, j] = len(subitem)
return t, tLengths
'''
Encodes text into integers. Keeps dictionary between string words (symbols)
and their matching integers. Supports encoding and decoding.
'''
class SymbolDict(object):
def __init__(self, empty=False):
self.padding = "<PAD>"
self.unknown = "<UNK>"
self.start = "<START>"
self.end = "<END>"
self.invalidSymbols = [self.padding, self.unknown, self.start, self.end]
if empty:
self.sym2id = {}
self.id2sym = []
else:
self.sym2id = {self.padding: 0, self.unknown: 1, self.start: 2, self.end: 3}
self.id2sym = [self.padding, self.unknown, self.start, self.end]
self.allSeqs = []
def getNumSymbols(self):
return len(self.sym2id)
def isPadding(self, enc):
return enc == 0
def isUnknown(self, enc):
return enc == 1
def isStart(self, enc):
return enc == 2
def isEnd(self, enc):
return enc == 3
def isValid(self, enc):
return enc < self.getNumSymbols() and enc >= len(self.invalidSymbols)
def resetSeqs(self):
self.allSeqs = []
def addSeq(self, seq):
self.allSeqs += seq
# Call to create the words-to-integers vocabulary after (reading word sequences with addSeq).
def createVocab(self, minCount=0):
counter = {}
for symbol in self.allSeqs:
counter[symbol] = counter.get(symbol, 0) + 1
for symbol in counter:
if counter[symbol] > minCount and (symbol not in self.sym2id):
self.sym2id[symbol] = self.getNumSymbols()
self.id2sym.append(symbol)
# Encodes a symbol. Returns the matching integer.
def encodeSym(self, symbol):
if symbol not in self.sym2id:
symbol = self.unknown
return self.sym2id[symbol]
'''
Encodes a sequence of symbols.
Optionally add start, or end symbols.
Optionally reverse sequence
'''
def encodeSequence(self, decoded, addStart=False, addEnd=False, reverse=False):
if reverse:
decoded.reverse()
if addStart:
decoded = [self.start] + decoded
if addEnd:
decoded = decoded + [self.end]
encoded = [self.encodeSym(symbol) for symbol in decoded]
return encoded
# Decodes an integer into its symbol
def decodeId(self, enc):
return self.id2sym[enc] if enc < self.getNumSymbols() else self.unknown
'''
Decodes a sequence of integers into their symbols.
If delim is given, joins the symbols using delim,
Optionally reverse the resulted sequence
'''
def decodeSequence(self, encoded, delim=None, reverse=False, stopAtInvalid=True):
length = 0
for i in range(len(encoded)):
if not self.isValid(encoded[i]) and stopAtInvalid:
break
length += 1
encoded = encoded[:length]
decoded = [self.decodeId(enc) for enc in encoded]
if reverse:
decoded.reverse()
if delim is not None:
return delim.join(decoded)
return decoded
'''
Preprocesses a given dataset into numpy arrays.
By calling preprocess, the class:
1. Reads the input data files into dictionary.
2. Saves the results jsons in files and loads them instead of parsing input if files exist/
3. Initializes word embeddings to random / GloVe.
4. Optionally filters data according to given filters.
5. Encodes and vectorize the data into numpy arrays.
6. Buckets the data according to the instances length.
'''
class Preprocesser(object):
def __init__(self):
self.questionDict = SymbolDict()
self.answerDict = SymbolDict(empty=True)
self.qaDict = SymbolDict()
self.specificDatasetDicts = None
self.programDict = SymbolDict()
self.programTranslator = ProgramTranslator(self.programDict, 2)
'''
Tokenizes string into list of symbols.
Args:
text: raw string to tokenize.
ignorePuncts: punctuation to ignore
keptPunct: punctuation to keep (as symbol)
endPunct: punctuation to remove if appears at the end
delim: delimiter between symbols
clean: True to replace text in string
replacelistPre: dictionary of replacement to perform on the text before tokanization
replacelistPost: dictionary of replacement to perform on the text after tokanization
'''
# sentence tokenizer
allPunct = ["?", "!", "\\", "/", ")", "(", ".", ",", ";", ":"]
def tokenize(self, text, ignoredPuncts=["?", "!", "\\", "/", ")", "("],
keptPuncts=[".", ",", ";", ":"], endPunct=[">", "<", ":"], delim=" ",
clean=False, replacelistPre=dict(), replacelistPost=dict()):
if clean:
for word in replacelistPre:
origText = text
text = text.replace(word, replacelistPre[word])
if (origText != text):
print(origText)
print(text)
print("")
for punct in endPunct:
if text[-1] == punct:
print(text)
text = text[:-1]
print(text)
print("")
for punct in keptPuncts:
text = text.replace(punct, delim + punct + delim)
for punct in ignoredPuncts:
text = text.replace(punct, "")
ret = text.lower().split(delim)
if clean:
origRet = ret
ret = [replacelistPost.get(word, word) for word in ret]
if origRet != ret:
print(origRet)
print(ret)
ret = [t for t in ret if t != ""]
return ret
# Read class' generated files.
# files interface
def readFiles(self, instancesFilename):
with open(instancesFilename, "r") as inFile:
instances = json.load(inFile)
with open(config.questionDictFile(), "rb") as inFile:
self.questionDict = pickle.load(inFile)
with open(config.answerDictFile(), "rb") as inFile:
self.answerDict = pickle.load(inFile)
with open(config.qaDictFile(), "rb") as inFile:
self.qaDict = pickle.load(inFile)
return instances
'''
Generate class' files. Save json representation of instances and
symbols-to-integers dictionaries.
'''
def writeFiles(self, instances, instancesFilename):
with open(instancesFilename, "w") as outFile:
json.dump(instances, outFile)
with open(config.questionDictFile(), "wb") as outFile:
pickle.dump(self.questionDict, outFile)
with open(config.answerDictFile(), "wb") as outFile:
pickle.dump(self.answerDict, outFile)
with open(config.qaDictFile(), "wb") as outFile:
pickle.dump(self.qaDict, outFile)
# Write prediction json to file and optionally a one-answer-per-line output file
def writePreds(self, res, tier, suffix=""):
if res is None:
return
preds = res["preds"]
sortedPreds = sorted(preds, key=lambda instance: instance["index"])
with open(config.predsFile(tier + suffix), "w") as outFile:
outFile.write(json.dumps(sortedPreds))
with open(config.answersFile(tier + suffix), "w") as outFile:
for instance in sortedPreds:
writeline(outFile, instance["prediction"])
def readPDF(self, instancesFilename):
instances = []
if os.path.exists(instancesFilename):
instances = self.readFiles(instancesFilename)
return instances
def readData(self, datasetFilename, instancesFilename, train):
# data extraction
datasetReader = {
"PDF": self.readPDF
}
return datasetReader[config.dataset](datasetFilename, instancesFilename, train)
def vectorizeData(self, data):
# if "SHARED" tie symbol representations in questions and answers
if config.ansEmbMod == "SHARED":
qDict = self.qaDict
else:
qDict = self.questionDict
encodedQuestion = [qDict.encodeSequence(d["questionSeq"]) for d in data]
question, questionL = vectorize2DList(encodedQuestion)
# pass the whole instances? if heavy then not good
imageId = [d["imageId"] for d in data]
instance = data
return {"question": question,
"questionLength": questionL,
"imageId": imageId
}
# Separates data based on a field length
def lseparator(self, key, lims):
maxI = len(lims)
def separatorFn(x):
v = x[key]
for i, lim in enumerate(lims):
if len(v) < lim:
return i
return maxI
return {"separate": separatorFn, "groupsNum": maxI + 1}
# Buckets data to groups using a separator
def bucket(self, instances, separator):
buckets = [[] for i in range(separator["groupsNum"])]
for instance in instances:
bucketI = separator["separate"](instance)
buckets[bucketI].append(instance)
return [bucket for bucket in buckets if len(bucket) > 0]
# Re-buckets bucket list given a seperator
def rebucket(self, buckets, separator):
res = []
for bucket in buckets:
res += self.bucket(bucket, separator)
return res
# Buckets data based on question / program length
def bucketData(self, data, noBucket=False):
if noBucket:
buckets = [data]
else:
if config.noBucket:
buckets = [data]
elif config.noRebucket:
questionSep = self.lseparator("questionSeq", config.questionLims)
buckets = self.bucket(data, questionSep)
else:
programSep = self.lseparator("programSeq", config.programLims)
questionSep = self.lseparator("questionSeq", config.questionLims)
buckets = self.bucket(data, programSep)
buckets = self.rebucket(buckets, questionSep)
return buckets
'''
Prepares data:
1. Filters data according to above arguments.
2. Takes only a subset of the data based on config.trainedNum / config.testedNum
3. Buckets data according to question / program length
4. Vectorizes data into numpy arrays
'''
def prepareData(self, data, train, filterKey=None, noBucket=False):
filterDefault = {"maxQLength": 0, "maxPLength": 0, "onlyChain": False, "filterOp": 0}
filterTrain = {"maxQLength": config.tMaxQ, "maxPLength": config.tMaxP,
"onlyChain": config.tOnlyChain, "filterOp": config.tFilterOp}
filterVal = {"maxQLength": config.vMaxQ, "maxPLength": config.vMaxP,
"onlyChain": config.vOnlyChain, "filterOp": config.vFilterOp}
filters = {"train": filterTrain, "evalTrain": filterTrain,
"val": filterVal, "test": filterDefault}
if filterKey is None:
fltr = filterDefault
else:
fltr = filters[filterKey]
# split data when finetuning on validation set
if config.trainExtra and config.extraVal and (config.finetuneNum > 0):
if train:
data = data[:config.finetuneNum]
else:
data = data[config.finetuneNum:]
typeFilter = config.typeFilters[fltr["filterOp"]]
# filter specific settings
if fltr["onlyChain"]:
data = [d for d in data if all((len(inputNum) < 2) for inputNum in d["programInputs"])]
if fltr["maxQLength"] > 0:
data = [d for d in data if len(d["questionSeq"]) <= fltr["maxQLength"]]
if fltr["maxPLength"] > 0:
data = [d for d in data if len(d["programSeq"]) <= fltr["maxPLength"]]
if len(typeFilter) > 0:
data = [d for d in data if d["programSeq"][-1] not in typeFilter]
# run on subset of the data. If 0 then use all data
num = config.trainedNum if train else config.testedNum
# retainVal = True to retain same clevr_sample of validation across runs
if (not train) and (not config.retainVal):
random.shuffle(data)
if num > 0:
data = data[:num]
# set number to match dataset size
if train:
config.trainedNum = len(data)
else:
config.testedNum = len(data)
# bucket
buckets = self.bucketData(data, noBucket=noBucket)
# vectorize
return [self.vectorizeData(bucket) for bucket in buckets]
# Prepares all the tiers of a dataset. See prepareData method for further details.
def prepareDataset(self, dataset, noBucket=False):
if dataset is None:
return None
for tier in dataset:
if dataset[tier] is not None:
dataset[tier]["data"] = self.prepareData(dataset[tier]["instances"],
train=dataset[tier]["train"], filterKey=tier,
noBucket=noBucket)
for tier in dataset:
if dataset[tier] is not None:
del dataset[tier]["instances"]
return dataset
# Initializes word embeddings to random uniform / random normal / GloVe.
def initializeWordEmbeddings(self, wordsDict=None, noPadding=False):
# default dictionary to use for embeddings
if wordsDict is None:
wordsDict = self.questionDict
# uniform initialization
if config.wrdEmbUniform:
lowInit = -1.0 * config.wrdEmbScale
highInit = 1.0 * config.wrdEmbScale
embeddings = np.random.uniform(low=lowInit, high=highInit,
size=(wordsDict.getNumSymbols(), config.wrdEmbDim))
# normal initialization
else:
embeddings = config.wrdEmbScale * np.random.randn(wordsDict.getNumSymbols(),
config.wrdEmbDim)
# if wrdEmbRandom = False, use GloVE
counter = 0
if (not config.wrdEmbRandom):
with open(config.wordVectorsFile, 'r') as inFile:
for line in inFile:
line = line.strip().split()
word = line[0].lower()
vector = [float(x) for x in line[1:]]
index = wordsDict.sym2id.get(word)
if index is not None:
embeddings[index] = vector
counter += 1
print(counter)
print(self.questionDict.sym2id)
print(len(self.questionDict.sym2id))
print(self.answerDict.sym2id)
print(len(self.answerDict.sym2id))
print(self.qaDict.sym2id)
print(len(self.qaDict.sym2id))
if noPadding:
return embeddings # no embedding for padding symbol
else:
return embeddings[1:]
'''
Initializes words embeddings for question words and optionally for answer words
(when config.ansEmbMod == "BOTH"). If config.ansEmbMod == "SHARED", tie embeddings for
question and answer same symbols.
'''
def initializeQAEmbeddings(self):
# use same embeddings for questions and answers
if config.ansEmbMod == "SHARED":
qaEmbeddings = self.initializeWordEmbeddings(self.qaDict)
ansMap = np.array([self.qaDict.sym2id[sym] for sym in self.answerDict.id2sym])
embeddings = {"qa": qaEmbeddings, "ansMap": ansMap}
# use different embeddings for questions and answers
else:
qEmbeddings = self.initializeWordEmbeddings(self.questionDict)
aEmbeddings = None
if config.ansEmbMod == "BOTH":
aEmbeddings = self.initializeWordEmbeddings(self.answerDict, noPadding=True)
embeddings = {"q": qEmbeddings, "a": aEmbeddings}
return embeddings
'''
Preprocesses a given dataset into numpy arrays:
1. Reads the input data files into dictionary.
2. Saves the results jsons in files and loads them instead of parsing input if files exist/
3. Initializes word embeddings to random / GloVe.
4. Optionally filters data according to given filters.
5. Encodes and vectorize the data into numpy arrays.
5. Buckets the data according to the instances length.
'''
def preprocessData(self, question, debug=False):
# Read data into json and symbols' dictionaries
print(bold("Loading data..."))
start = time.time()
with open(config.questionDictFile(), "rb") as inFile:
self.questionDict = pickle.load(inFile)
with open(config.qaDictFile(), "rb") as inFile:
self.qaDict = pickle.load(inFile)
with open(config.answerDictFile(), "rb") as inFile:
self.answerDict = pickle.load(inFile)
question = question.replace('?', '').replace(', ', '').lower().split()
encodedQuestion = self.questionDict.encodeSequence(question)
data = {'question': np.array([encodedQuestion]), 'questionLength': np.array([len(encodedQuestion)])}
print("took {:.2f} seconds".format(time.time() - start))
# Initialize word embeddings (random / glove)
print(bold("Loading word vectors..."))
start = time.time()
embeddings = self.initializeQAEmbeddings()
print("took {:.2f} seconds".format(time.time() - start))
answer = 'yes' # DUMMY_ANSWER
self.answerDict.addSeq([answer])
self.qaDict.addSeq([answer])
config.questionWordsNum = self.questionDict.getNumSymbols()
config.answerWordsNum = self.answerDict.getNumSymbols()
return data, embeddings, self.answerDict
|