Spaces:
Runtime error
Runtime error
File size: 35,565 Bytes
9212da6 8d32742 b3c8e4c 9212da6 b3c8e4c 9212da6 b3c8e4c 9212da6 b3c8e4c 9212da6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import os
import argparse
###################################### configuration ######################################
class Config(object):
typeFilters = [[], ["1_query_size_",
"1_query_material_",
"2_equal_color_",
"2_equal_shape_"],
["1_query_color_",
"1_query_shape_",
"2_equal_size_",
"2_equal_material_"]]
#### files interface
## data files
dataPath = "" # dataset specific
datasetFilename = "" # dataset specific
# file names
imagesFilename = "{tier}.h5" # Images
instancesFilename = "{tier}Instances.json"
# symbols dictionaries
questionDictFilename = "questionDict.pkl"
answerDictFilename = "answerDict.pkl"
qaDictFilename = "qaDict.pkl"
## experiment files
expPathname = "{expName}"
expName = "" # will be assigned through argparse
weightsPath = "./weights"
weightsFilename = "weights{epoch}.ckpt"
# model predictions and optionally attention maps
predsPath = "./preds"
predsFilename = "{tier}Predictions-{expName}.json"
answersFilename = "{tier}Answers-{expName}.txt"
# logging of accuracy, loss etc. per epoch
logPath = "./results"
logFilename = "results-{expName}.csv"
# configuration file of the used flags to run the experiment
configPath = "./results"
configFilename = "config-{expName}.json"
def toString(self):
return self.expName
# make directories of experiment if not exist yet
def makedirs(self, directory):
directory = os.path.join(directory, self.expPath())
if not os.path.exists(directory):
os.makedirs(directory)
return directory
### filename builders
## data files
def dataFile(self, filename):
return os.path.join(self.dataPath, filename)
def generatedFile(self, filename):
return self.dataFile(self.generatedPrefix + filename)
datasetFile = lambda self, tier: self.dataFile(self.datasetFilename.format(tier = tier))
imagesIdsFile = lambda self, tier: self.dataFile(self.imgIdsFilename.format(tier = tier)) #
imagesFile = lambda self, tier: self.dataFile(self.imagesFilename.format(tier = tier))
instancesFile = lambda self, tier: self.generatedFile(self.instancesFilename.format(tier = tier))
questionDictFile = lambda self: self.generatedFile(self.questionDictFilename)
answerDictFile = lambda self: self.generatedFile(self.answerDictFilename)
qaDictFile = lambda self: self.generatedFile(self.qaDictFilename)
## experiment files
expPath = lambda self: self.expPathname.format(expName = self.toString())
weightsDir = lambda self: self.makedirs(self.weightsPath)
predsDir = lambda self: self.makedirs(self.predsPath)
logDir = lambda self: self.makedirs(self.logPath)
configDir = lambda self: self.makedirs(self.configPath)
weightsFile = lambda self, epoch: os.path.join(self.weightsDir(), self.weightsFilename.format(epoch = str(epoch)))
predsFile = lambda self, tier: os.path.join(self.predsDir(), self.predsFilename.format(tier = tier, expName = self.expName))
answersFile = lambda self, tier: os.path.join(self.predsDir(), self.answersFilename.format(tier = tier, expName = self.expName))
logFile = lambda self: os.path.join(self.logDir(), self.logFilename.format(expName = self.expName))
configFile = lambda self: os.path.join(self.configDir(), self.configFilename.format(expName = self.expName))
# global configuration variable. Holds file paths and program parameters
config = Config()
###################################### arguments ######################################
def parseArgs():
parser = argparse.ArgumentParser(fromfile_prefix_chars = "@")
################ systems
#custom args
parser.add_argument('--train_image_length', default=500, type=int, )
parser.add_argument('--test_image_length', default=100, type=int, )
parser.add_argument('--val_image_length', default=50, type=int, )
# gpus and memory
parser.add_argument("--gpus", default = "", type = str, help = "comma-separated list of gpus to use")
parser.add_argument("--gpusNum", default = 1, type = int, help = "number of gpus to use")
parser.add_argument("--allowGrowth", action = "store_true", help = "allow gpu memory growth")
parser.add_argument("--maxMemory", default = 1.0, type = float, help = "set maximum gpu memory usage")
parser.add_argument("--parallel", action = "store_true", help = "load images in parallel to batch running")
parser.add_argument("--workers", default = 1, type = int, help = "number of workers to load images")
parser.add_argument("--taskSize", default = 8, type = int, help = "number of image batches to load in advance") # 40
# parser.add_argument("--tasksNum", default = 20, type = int, help = "maximal queue size for tasks (to constrain ram usage)") # 2
parser.add_argument("--useCPU", action = "store_true", help = "put word embeddings on cpu")
# weight loading and training
parser.add_argument("-r", "--restore", action = "store_true", help = "restore last epoch (based on results file)")
parser.add_argument("--restoreEpoch", default = 0, type = int, help = "if positive, specific epoch to restore")
parser.add_argument("--weightsToKeep", default = 2, type = int, help = "number of previous epochs' weights keep")
parser.add_argument("--saveEvery", default = 3000, type = int, help = "number of iterations to save weights after")
parser.add_argument("--calleEvery", default = 1500, type = int, help = "number of iterations to call custom function after")
parser.add_argument("--saveSubset", action = "store_true", help = "save only subset of the weights")
parser.add_argument("--trainSubset", action = "store_true", help = "train only subset of the weights")
parser.add_argument("--varSubset", default = [], nargs = "*", type = str, help = "list of namespaces to train on")
# trainReader = ["questionEmbeddings", "questionReader"]
# saveControl = ["questionEmbeddings", "programEmbeddings", "seqReader", "programControl"]
# experiment files
parser.add_argument("--expName", default = "PDF_exp_extra", type = str, help = "experiment name")
# data files
parser.add_argument("--dataset", default = "PDF", choices = ["PDF", "CLEVR", "NLVR"], type = str) #
parser.add_argument("--dataBasedir", default = "./", type = str, help = "data base directory") # /jagupard14/scr1/dorarad/
parser.add_argument("--generatedPrefix", default = "gennew", type = str, help = "prefix for generated data files")
parser.add_argument("--featureType", default = "norm_128x32", type = str, help = "features type") #
# resnet101_512x128, norm_400x100, none_80x20, normPerImage_80x20, norm_80x20
################ optimization
# training/testing
parser.add_argument("--train", action = "store_true", help = "run training")
parser.add_argument("--evalTrain", action = "store_true", help = "run eval with ema on train dataset") #
parser.add_argument("--test", action = "store_true", help = "run testing every epoch and generate predictions file") #
parser.add_argument("--finalTest", action = "store_true", help = "run testing on final epoch")
parser.add_argument("--retainVal", action = "store_true", help = "retain validation order between runs") #
parser.add_argument("--getPreds", action = "store_true", help = "store prediction")
parser.add_argument("--getAtt", action = "store_true", help = "store attention maps")
parser.add_argument("--analysisType", default = "", type = str, choices = ["", "questionLength, programLength","type", "arity"], help = "show breakdown of results according to type") #
parser.add_argument("--trainedNum", default = 0, type = int, help = "if positive, train on subset of the data")
parser.add_argument("--testedNum", default = 0, type = int, help = "if positive, test on subset of the data")
# bucketing
parser.add_argument("--noBucket", action = "store_true", help = "bucket data according to question length")
parser.add_argument("--noRebucket", action = "store_true", help = "bucket data according to question and program length") #
# filtering
parser.add_argument("--tOnlyChain", action = "store_true", help = "train only chain questions")
parser.add_argument("--vOnlyChain", action = "store_true", help = "test only chain questions")
parser.add_argument("--tMaxQ", default = 0, type = int, help = "if positive, train on questions up to this length")
parser.add_argument("--tMaxP", default = 0, type = int, help = "if positive, test on questions up to this length")
parser.add_argument("--vMaxQ", default = 0, type = int, help = "if positive, train on questions with programs up to this length")
parser.add_argument("--vMaxP", default = 0, type = int, help = "if positive, test on questions with programs up to this length")
parser.add_argument("--tFilterOp", default = 0, type = int, help = "train questions by to be included in the types listed")
parser.add_argument("--vFilterOp", default = 0, type = int, help = "test questions by to be included in the types listed")
# extra and extraVal
parser.add_argument("--extra", action = "store_true", help = "prepare extra data (add to vocabulary") #
parser.add_argument("--trainExtra", action = "store_true", help = "train (only) on extra data") #
parser.add_argument("--alterExtra", action = "store_true", help = "alter main data training with extra dataset") #
parser.add_argument("--alterNum", default = 1, type = int, help = "alteration rate") #
parser.add_argument("--extraVal", action = "store_true", help = "only extra validation data (for compositional clevr)") #
parser.add_argument("--finetuneNum", default = 0, type = int, help = "if positive, finetune on that subset of val (for compositional clevr)") #
# exponential moving average
parser.add_argument("--useEMA", action = "store_true", help = "use exponential moving average for weights")
parser.add_argument("--emaDecayRate", default = 0.999, type = float, help = "decay rate for exponential moving average")
# sgd optimizer
parser.add_argument("--batchSize", default = 64, type = int, help = "batch size")
parser.add_argument("--epochs", default = 100, type = int, help = "number of epochs to run")
parser.add_argument("--lr", default = 0.0001, type = float, help = "learning rate")
parser.add_argument("--lrReduce", action = "store_true", help = "reduce learning rate if training loss doesn't go down (manual annealing)")
parser.add_argument("--lrDecayRate", default = 0.5, type = float, help = "learning decay rate if training loss doesn't go down")
parser.add_argument("--earlyStopping", default = 0, type = int, help = "if positive, stop if no improvement for that number of epochs")
parser.add_argument("--adam", action = "store_true", help = "use adam")
parser.add_argument("--l2", default = 0, type = float, help = "if positive, add l2 loss term")
parser.add_argument("--clipGradients", action = "store_true", help = "clip gradients")
parser.add_argument("--gradMaxNorm", default = 8, type = int, help = "clipping value")
# batch normalization
parser.add_argument("--memoryBN", action = "store_true", help = "use batch normalization on the recurrent memory")
parser.add_argument("--stemBN", action = "store_true", help = "use batch normalization in the image input unit (stem)")
parser.add_argument("--outputBN", action = "store_true", help = "use batch normalization in the output unit")
parser.add_argument("--bnDecay", default = 0.999, type = float, help = "batch norm decay rate")
parser.add_argument("--bnCenter", action = "store_true", help = "batch norm with centering")
parser.add_argument("--bnScale", action = "store_true", help = "batch norm with scaling")
## dropouts
parser.add_argument("--encInputDropout", default = 0.85, type = float, help = "dropout of the rnn inputs to the Question Input Unit")
parser.add_argument("--encStateDropout", default = 1.0, type = float, help = "dropout of the rnn states of the Question Input Unit")
parser.add_argument("--stemDropout", default = 0.82, type = float, help = "dropout of the Image Input Unit (the stem)")
parser.add_argument("--qDropout", default = 0.92, type = float, help = "dropout on the question vector")
# parser.add_argument("--qDropoutOut", default = 1.0, type = float, help = "dropout on the question vector the goes to the output unit")
# parser.add_argument("--qDropoutMAC", default = 1.0, type = float, help = "dropout on the question vector the goes to MAC")
parser.add_argument("--memoryDropout", default = 0.85, type = float, help = "dropout on the recurrent memory")
parser.add_argument("--readDropout", default = 0.85, type = float, help = "dropout of the read unit")
parser.add_argument("--writeDropout", default = 1.0, type = float, help = "dropout of the write unit")
parser.add_argument("--outputDropout", default = 0.85, type = float, help = "dropout of the output unit")
parser.add_argument("--parametricDropout", action = "store_true", help = "use parametric dropout") #
parser.add_argument("--encVariationalDropout", action = "store_true", help = "use variational dropout in the RNN input unit")
parser.add_argument("--memoryVariationalDropout", action = "store_true", help = "use variational dropout across the MAC network")
## nonlinearities
parser.add_argument("--relu", default = "ELU", choices = ["STD", "PRM", "ELU", "LKY", "SELU"], type = str, help = "type of ReLU to use: standard, parametric, ELU, or leaky")
# parser.add_argument("--reluAlpha", default = 0.2, type = float, help = "alpha value for the leaky ReLU")
parser.add_argument("--mulBias", default = 0.0, type = float, help = "bias to add in multiplications (x + b) * (y + b) for better training") #
parser.add_argument("--imageLinPool", default = 2, type = int, help = "pooling for image linearizion")
################ baseline model parameters
parser.add_argument("--useBaseline", action = "store_true", help = "run the baseline model")
parser.add_argument("--baselineLSTM", action = "store_true", help = "use LSTM in baseline")
parser.add_argument("--baselineCNN", action = "store_true", help = "use CNN in baseline")
parser.add_argument("--baselineAtt", action = "store_true", help = "use stacked attention baseline")
parser.add_argument("--baselineProjDim", default = 64, type = int, help = "projection dimension for image linearizion")
parser.add_argument("--baselineAttNumLayers", default = 2, type = int, help = "number of stacked attention layers")
parser.add_argument("--baselineAttType", default = "ADD", type = str, choices = ["MUL", "DIAG", "BL", "ADD"], help = "attention type (multiplicative, additive, etc)")
################ image input unit (the "stem")
parser.add_argument("--stemDim", default = 512, type = int, help = "dimension of stem CNNs")
parser.add_argument("--stemNumLayers", default = 2, type = int, help = "number of stem layers")
parser.add_argument("--stemKernelSize", default = 3, type = int, help = "kernel size for stem (same for all the stem layers)")
parser.add_argument("--stemKernelSizes", default = None, nargs = "*", type = int, help = "kernel sizes for stem (per layer)")
parser.add_argument("--stemStrideSizes", default = None, nargs = "*", type = int, help = "stride sizes for stem (per layer)")
parser.add_argument("--stemLinear", action = "store_true", help = "use a linear stem (instead of CNNs)") #
# parser.add_argument("--stemProjDim", default = 64, type = int, help = "projection dimension of in image linearization") #
# parser.add_argument("--stemProjPooling", default = 2, type = int, help = "pooling for the image linearization") #
parser.add_argument("--stemGridRnn", action = "store_true", help = "use grid RNN layer") #
parser.add_argument("--stemGridRnnMod", default = "RNN", type = str, choices = ["RNN", "GRU"], help = "RNN type for grid") #
parser.add_argument("--stemGridAct", default = "NON", type = str, choices = ["NON", "RELU", "TANH"], help = "nonlinearity type for grid") #
## location
parser.add_argument("--locationAware", action = "store_true", help = "add positional features to image representation (linear meshgrid by default)")
parser.add_argument("--locationType", default = "L", type = str, choices = ["L", "PE"], help = "L: linear features, PE: Positional Encoding")
parser.add_argument("--locationBias", default = 1.0, type = float, help = "the scale of the positional features")
parser.add_argument("--locationDim", default = 32, type = int, help = "the number of PE dimensions")
################ question input unit (the "encoder")
parser.add_argument("--encType", default = "LSTM", choices = ["RNN", "GRU", "LSTM", "MiGRU", "MiLSTM"], help = "encoder RNN type")
parser.add_argument("--encDim", default = 512, type = int, help = "dimension of encoder RNN")
parser.add_argument("--encNumLayers", default = 1, type = int, help = "number of encoder RNN layers")
parser.add_argument("--encBi", action = "store_true", help = "use bi-directional encoder")
# parser.add_argument("--encOutProj", action = "store_true", help = "add projection layer for encoder outputs")
# parser.add_argument("--encOutProjDim", default = 256, type = int, help = "dimension of the encoder projection layer")
# parser.add_argument("--encQProj", action = "store_true", help = "add projection for the question representation")
parser.add_argument("--encProj", action = "store_true", help = "project encoder outputs and question")
parser.add_argument("--encProjQAct", default = "NON", type = str, choices = ["NON", "RELU", "TANH"], help = "project question vector with this activation")
##### word embeddings
parser.add_argument("--wrdEmbDim", default = 300, type = int, help = "word embeddings dimension")
parser.add_argument("--wrdEmbRandom", action = "store_true", help = "initialize word embeddings to random (normal)")
parser.add_argument("--wrdEmbUniform", action = "store_true", help = "initialize with uniform distribution")
parser.add_argument("--wrdEmbScale", default = 1.0, type = float, help = "word embeddings initialization scale")
parser.add_argument("--wrdEmbFixed", action = "store_true", help = "set word embeddings fixed (don't train)")
parser.add_argument("--wrdEmbUnknown", action = "store_true", help = "set words outside of training set to <UNK>")
parser.add_argument("--ansEmbMod", default = "NON", choices = ["NON", "SHARED", "BOTH"], type = str, help = "BOTH: create word embeddings for answers. SHARED: share them with question embeddings.") #
parser.add_argument("--answerMod", default = "NON", choices = ["NON", "MUL", "DIAG", "BL"], type = str, help = "operation for multiplication with answer embeddings: direct multiplication, scalar weighting, or bilinear") #
################ output unit (classifier)
parser.add_argument("--outClassifierDims", default = [512], nargs = "*", type = int, help = "dimensions of the classifier")
parser.add_argument("--outImage", action = "store_true", help = "feed the image to the output unit")
parser.add_argument("--outImageDim", default = 1024, type = int, help = "dimension of linearized image fed to the output unit")
parser.add_argument("--outQuestion", action = "store_true", help = "feed the question to the output unit")
parser.add_argument("--outQuestionMul", action = "store_true", help = "feed the multiplication of question and memory to the output unit")
################ network
parser.add_argument("--netLength", default = 16, type = int, help = "network length (number of cells)")
# parser.add_argument("--netDim", default = 512, type = int)
parser.add_argument("--memDim", default = 512, type = int, help = "dimension of memory state")
parser.add_argument("--ctrlDim", default = 512, type = int, help = "dimension of control state")
parser.add_argument("--attDim", default = 512, type = int, help = "dimension of pre-attention interactions space")
parser.add_argument("--unsharedCells", default = False, type = bool, help = "unshare weights between cells ")
# initialization
parser.add_argument("--initCtrl", default = "PRM", type = str, choices = ["PRM", "ZERO", "Q"], help = "initialization mod for control")
parser.add_argument("--initMem", default = "PRM", type = str, choices = ["PRM", "ZERO", "Q"], help = "initialization mod for memory")
parser.add_argument("--initKBwithQ", default = "NON", type = str, choices = ["NON", "CNCT", "MUL"], help = "merge question with knowledge base")
parser.add_argument("--addNullWord", action = "store_true", help = "add parametric word in the beginning of the question")
################ control unit
# control ablations (use whole question or pre-attention continuous vectors as control)
parser.add_argument("--controlWholeQ", action = "store_true", help = "use whole question vector as control")
parser.add_argument("--controlContinuous", action = "store_true", help = "use continuous representation of control (without attention)")
# step 0: inputs to control unit (word embeddings or encoder outputs, with optional projection)
parser.add_argument("--controlContextual", action = "store_true", help = "use contextual words for attention (otherwise will use word embeddings)")
parser.add_argument("--controlInWordsProj", action = "store_true", help = "apply linear projection over words for attention computation")
parser.add_argument("--controlOutWordsProj", action = "store_true", help = "apply linear projection over words for summary computation")
parser.add_argument("--controlInputUnshared", action = "store_true", help = "use different question representation for each cell")
parser.add_argument("--controlInputAct", default = "TANH", type = str, choices = ["NON", "RELU", "TANH"], help = "activation for question projection")
# step 1: merging previous control and whole question
parser.add_argument("--controlFeedPrev", action = "store_true", help = "feed previous control state")
parser.add_argument("--controlFeedPrevAtt", action = "store_true", help = "feed previous control post word attention (otherwise will feed continuous control)")
parser.add_argument("--controlFeedInputs", action = "store_true", help = "feed question representation")
parser.add_argument("--controlContAct", default = "TANH", type = str, choices = ["NON", "RELU", "TANH"], help = "activation on the words interactions")
# step 2: word attention and optional projection
parser.add_argument("--controlConcatWords", action = "store_true", help = "concatenate words to interaction when computing attention")
parser.add_argument("--controlProj", action = "store_true", help = "apply linear projection on words interactions")
parser.add_argument("--controlProjAct", default = "NON", type = str, choices = ["NON", "RELU", "TANH"], help = "activation for control interactions")
# parser.add_argument("--controlSelfAtt", default = False, type = bool)
# parser.add_argument("--controlCoverage", default = False, type = bool)
# parser.add_argument("--controlCoverageBias", default = 1.0, type = float)
# parser.add_argument("--controlPostRNN", default = False, type = bool)
# parser.add_argument("--controlPostRNNmod", default = "RNN", type = str) # GRU
# parser.add_argument("--selfAttShareInter", default = False, type = bool)
# parser.add_argument("--wordControl", default = False, type = bool)
# parser.add_argument("--gradualControl", default = False, type = bool)
################ read unit
# step 1: KB-memory interactions
parser.add_argument("--readProjInputs", action = "store_true", help = "project read unit inputs")
parser.add_argument("--readProjShared", action = "store_true", help = "use shared projection for all read unit inputs")
parser.add_argument("--readMemAttType", default = "MUL", type = str, choices = ["MUL", "DIAG", "BL", "ADD"], help = "attention type for interaction with memory")
parser.add_argument("--readMemConcatKB", action = "store_true", help = "concatenate KB elements to memory interaction")
parser.add_argument("--readMemConcatProj", action = "store_true", help = "concatenate projected values instead or original to memory interaction")
parser.add_argument("--readMemProj", action = "store_true", help = "project interactions with memory")
parser.add_argument("--readMemAct", default = "RELU", type = str, choices = ["NON", "RELU", "TANH"], help = "activation for memory interaction")
# step 2: interaction with control
parser.add_argument("--readCtrl", action = "store_true", help = "compare KB-memory interactions to control")
parser.add_argument("--readCtrlAttType", default = "MUL", type = str, choices = ["MUL", "DIAG", "BL", "ADD"], help = "attention type for interaction with control")
parser.add_argument("--readCtrlConcatKB", action = "store_true", help = "concatenate KB elements to control interaction")
parser.add_argument("--readCtrlConcatProj", action = "store_true", help = "concatenate projected values instead or original to control interaction")
parser.add_argument("--readCtrlConcatInter", action = "store_true", help = "concatenate memory interactions to control interactions")
parser.add_argument("--readCtrlAct", default = "RELU", type = str, choices = ["NON", "RELU", "TANH"], help = "activation for control interaction")
# step 3: summarize attention over knowledge base
parser.add_argument("--readSmryKBProj", action = "store_true", help = "use knowledge base projections when summing attention up (should be used only if KB is projected.")
# parser.add_argument("--saAllMultiplicative", default = False, type = bool)
# parser.add_argument("--saSumMultiplicative", default = False, type = bool)
################ write unit
# step 1: input to the write unit (only previous memory, or new information, or both)
parser.add_argument("--writeInputs", default = "BOTH", type = str, choices = ["MEM", "INFO", "BOTH", "SUM"], help = "inputs to the write unit")
parser.add_argument("--writeConcatMul", action = "store_true", help = "add multiplicative integration between inputs")
parser.add_argument("--writeInfoProj", action = "store_true", help = "project retrieved info")
parser.add_argument("--writeInfoAct", default = "NON", type = str, choices = ["NON", "RELU", "TANH"], help = "new info activation")
# step 2: self attention and following projection
parser.add_argument("--writeSelfAtt", action = "store_true", help = "use self attention")
parser.add_argument("--writeSelfAttMod", default = "NON", type = str, choices = ["NON", "CONT"], help = "control version to compare to")
parser.add_argument("--writeMergeCtrl", action = "store_true", help = "merge control with memory")
parser.add_argument("--writeMemProj", action = "store_true", help = "project new memory")
parser.add_argument("--writeMemAct", default = "NON", type = str, choices = ["NON", "RELU", "TANH"], help = "new memory activation")
# step 3: gate between new memory and previous value
parser.add_argument("--writeGate", action = "store_true", help = "add gate to write unit")
parser.add_argument("--writeGateShared", action = "store_true", help = "use one gate value for all dimensions of the memory state")
parser.add_argument("--writeGateBias", default = 1.0, type = float, help = "bias for the write unit gate (positive to bias for taking new memory)")
## modular
# parser.add_argument("--modulesNum", default = 10, type = int)
# parser.add_argument("--controlBoth", default = False, type = bool)
# parser.add_argument("--addZeroModule", default = False, type = bool)
# parser.add_argument("--endModule", default = False, type = bool)
## hybrid
# parser.add_argument("--hybrid", default = False, type = bool, help = "hybrid attention cnn model")
# parser.add_argument("--earlyHybrid", default = False, type = bool)
# parser.add_argument("--lateHybrid", default = False, type = bool)
## autoencoders
# parser.add_argument("--autoEncMem", action = "store_true", help = "add memory2control auto-encoder loss")
# parser.add_argument("--autoEncMemW", default = 0.0001, type = float, help = "weight for auto-encoder loss")
# parser.add_argument("--autoEncMemInputs", default = "INFO", type = str, choices = ["MEM", "INFO"], help = "inputs to auto-encoder")
# parser.add_argument("--autoEncMemAct", default = "NON", type = str, choices = ["NON", "RELU", "TANH"], help = "activation type in the auto-encoder")
# parser.add_argument("--autoEncMemLoss", default = "CONT", type = str, choices = ["CONT", "PROB", "SMRY"], help = "target for the auto-encoder loss")
# parser.add_argument("--autoEncMemCnct", action = "store_true", help = "concat word attentions to auto-encoder features")
# parser.add_argument("--autoEncCtrl", action = "store_true")
# parser.add_argument("--autoEncCtrlW", default = 0.0001, type = float)
# parser.add_argument("--autoEncCtrlGRU", action = "store_true")
## temperature
# parser.add_argument("--temperature", default = 1.0, type = float, help = "temperature for modules softmax") #
# parser.add_argument("--tempParametric", action = "store_true", help = "parametric temperature") #
# parser.add_argument("--tempDynamic", action = "store_true", help = "dynamic temperature") #
# parser.add_argument("--tempAnnealRate", default = 0.000004, type = float, help = "temperature annealing rate") #
# parser.add_argument("--tempMin", default = 0.5, type = float, help = "minimum temperature") #
## gumbel
# parser.add_argument("--gumbelSoftmax", action = "store_true", help = "use gumbel for the module softmax (soft for training and hard for testing)") #
# parser.add_argument("--gumbelSoftmaxBoth", action = "store_true", help = "use softmax for training and testing") #
# parser.add_argument("--gumbelArgmaxBoth", action = "store_true", help = "use argmax for training and testing") #
parser.parse_args(namespace = config)
###################################### dataset configuration ######################################
def configPDF():
config.dataPath = "{dataBasedir}/PDF_v1/data".format(dataBasedir = config.dataBasedir)
config.datasetFilename = "PDF_{tier}_questions.json"
config.wordVectorsFile = "./PDF_v1/data/glove/glove.6B.{dim}d.txt".format(dim = config.wrdEmbDim) #
config.imageDims = [14, 14, 1024]
config.programLims = [5, 10, 15, 20]
config.questionLims = [10, 15, 20, 25]
def configCLEVR():
config.dataPath = "{dataBasedir}/CLEVR_v1/data".format(dataBasedir = config.dataBasedir)
config.datasetFilename = "CLEVR_{tier}_questions.json"
config.wordVectorsFile = "./CLEVR_v1/data/glove/glove.6B.{dim}d.txt".format(dim = config.wrdEmbDim) #
config.imageDims = [14, 14, 1024]
config.programLims = [5, 10, 15, 20]
config.questionLims = [10, 15, 20, 25]
def configNLVR():
config.dataPath = "{dataBasedir}/nlvr".format(dataBasedir = config.dataBasedir)
config.datasetFilename = "{tier}.json"
config.imagesFilename = "{{tier}}_{featureType}.h5".format(featureType = config.featureType)
config.imgIdsFilename = "{tier}ImgIds.json"
config.wordVectorsFile = "./CLEVR_v1/data/glove/glove.6B.{dim}d.txt".format(dim = config.wrdEmbDim) #
config.questionLims = [12]
# config.noRebucket = True
# if config.stemKernelSizes == []:
# if config.featureType.endsWith("128x32"):
# config.stemKernelSizes = [8, 4, 4]
# config.stemStrideSizes = [2, 2, 1]
# config.stemNumLayers = 3
# if config.featureType.endsWith("512x128"):
# config.stemKernelSizes = [8, 4, 4, 2]
# config.stemStrideSizes = [4, 2, 2, 1]
# config.stemNumLayers = 4
# config.stemDim = 64
if config.featureType == "resnet101_512x128":
config.imageDims = [8, 32, 1024]
else:
stridesOverall = 1
if stemStrideSizes is not None:
for s in config.stemStrideSizes:
stridesOverall *= int(s)
size = config.featureType.split("_")[-1].split("x")
config.imageDims = [int(size[1]) / stridesOverall, int(size[0]) / stridesOverall, 3]
## dataset specific configs
loadDatasetConfig = {
"CLEVR": configCLEVR,
"NLVR": configNLVR,
"PDF": configPDF
}
|