Spaces:
Runtime error
Runtime error
File size: 33,771 Bytes
f07fdc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
import time
import math
import numpy as np
import tensorflow as tf
import ops
from config import config
from mac_cell import MACCell
'''
The MAC network model. It performs reasoning processes to answer a question over
knowledge base (the image) by decomposing it into attention-based computational steps,
each perform by a recurrent MAC cell.
The network has three main components.
Input unit: processes the network inputs: raw question strings and image into
distributional representations.
The MAC network: calls the MACcells (mac_cell.py) config.netLength number of times,
to perform the reasoning process over the question and image.
The output unit: a classifier that receives the question and final state of the MAC
network and uses them to compute log-likelihood over the possible one-word answers.
'''
class MACnet(object):
'''Initialize the class.
Args:
embeddingsInit: initialization for word embeddings (random / glove).
answerDict: answers dictionary (mapping between integer id and symbol).
'''
def __init__(self, embeddingsInit, answerDict):
self.embeddingsInit = embeddingsInit
self.answerDict = answerDict
self.build()
'''
Initializes placeholders.
questionsIndicesAll: integer ids of question words.
[batchSize, questionLength]
questionLengthsAll: length of each question.
[batchSize]
imagesPlaceholder: image features.
[batchSize, channels, height, width]
(converted internally to [batchSize, height, width, channels])
answersIndicesAll: integer ids of answer words.
[batchSize]
lr: learning rate (tensor scalar)
train: train / evaluation (tensor boolean)
dropout values dictionary (tensor scalars)
'''
# change to H x W x C?
def addPlaceholders(self):
with tf.variable_scope("Placeholders"):
## data
# questions
self.questionsIndicesAll = tf.placeholder(tf.int32, shape = (None, None))
self.questionLengthsAll = tf.placeholder(tf.int32, shape = (None, ))
# images
# put image known dimension as last dim?
self.imagesPlaceholder = tf.placeholder(tf.float32, shape = (None, None, None, None))
self.imagesAll = tf.transpose(self.imagesPlaceholder, (0, 2, 3, 1))
# self.imageH = tf.shape(self.imagesAll)[1]
# self.imageW = tf.shape(self.imagesAll)[2]
# answers
self.answersIndicesAll = tf.placeholder(tf.int32, shape = (None, ))
## optimization
self.lr = tf.placeholder(tf.float32, shape = ())
self.train = tf.placeholder(tf.bool, shape = ())
self.batchSizeAll = tf.shape(self.questionsIndicesAll)[0]
## dropouts
# TODO: change dropouts to be 1 - current
self.dropouts = {
"encInput": tf.placeholder(tf.float32, shape = ()),
"encState": tf.placeholder(tf.float32, shape = ()),
"stem": tf.placeholder(tf.float32, shape = ()),
"question": tf.placeholder(tf.float32, shape = ()),
# self.dropouts["question"]Out = tf.placeholder(tf.float32, shape = ())
# self.dropouts["question"]MAC = tf.placeholder(tf.float32, shape = ())
"read": tf.placeholder(tf.float32, shape = ()),
"write": tf.placeholder(tf.float32, shape = ()),
"memory": tf.placeholder(tf.float32, shape = ()),
"output": tf.placeholder(tf.float32, shape = ())
}
# batch norm params
self.batchNorm = {"decay": config.bnDecay, "train": self.train}
# if config.parametricDropout:
# self.dropouts["question"] = parametricDropout("qDropout", self.train)
# self.dropouts["read"] = parametricDropout("readDropout", self.train)
# else:
# self.dropouts["question"] = self.dropouts["_q"]
# self.dropouts["read"] = self.dropouts["_read"]
# if config.tempDynamic:
# self.tempAnnealRate = tf.placeholder(tf.float32, shape = ())
self.H, self.W, self.imageInDim = config.imageDims
# Feeds data into placeholders. See addPlaceholders method for further details.
def createFeedDict(self, data, images, train):
feedDict = {
self.questionsIndicesAll: np.array(data["question"]),
self.questionLengthsAll: np.array(data["questionLength"]),
self.imagesPlaceholder: images,
# self.answersIndicesAll: [0],
self.dropouts["encInput"]: config.encInputDropout if train else 1.0,
self.dropouts["encState"]: config.encStateDropout if train else 1.0,
self.dropouts["stem"]: config.stemDropout if train else 1.0,
self.dropouts["question"]: config.qDropout if train else 1.0, #_
self.dropouts["memory"]: config.memoryDropout if train else 1.0,
self.dropouts["read"]: config.readDropout if train else 1.0, #_
self.dropouts["write"]: config.writeDropout if train else 1.0,
self.dropouts["output"]: config.outputDropout if train else 1.0,
# self.dropouts["question"]Out: config.qDropoutOut if train else 1.0,
# self.dropouts["question"]MAC: config.qDropoutMAC if train else 1.0,
self.lr: config.lr,
self.train: train
}
# if config.tempDynamic:
# feedDict[self.tempAnnealRate] = tempAnnealRate
return feedDict
# Splits data to a specific GPU (tower) for parallelization
def initTowerBatch(self, towerI, towersNum, dataSize):
towerBatchSize = tf.floordiv(dataSize, towersNum)
start = towerI * towerBatchSize
end = (towerI + 1) * towerBatchSize if towerI < towersNum - 1 else dataSize
self.questionsIndices = self.questionsIndicesAll[start:end]
self.questionLengths = self.questionLengthsAll[start:end]
self.images = self.imagesAll[start:end]
self.answersIndices = self.answersIndicesAll[start:end]
self.batchSize = end - start
'''
The Image Input Unit (stem). Passes the image features through a CNN-network
Optionally adds position encoding (doesn't in the default behavior).
Flatten the image into Height * Width "Knowledge base" array.
Args:
images: image input. [batchSize, height, width, inDim]
inDim: input image dimension
outDim: image out dimension
addLoc: if not None, adds positional encoding to the image
Returns preprocessed images.
[batchSize, height * width, outDim]
'''
def stem(self, images, inDim, outDim, addLoc = None):
with tf.variable_scope("stem"):
if addLoc is None:
addLoc = config.locationAware
if config.stemLinear:
features = ops.linear(images, inDim, outDim)
else:
dims = [inDim] + ([config.stemDim] * (config.stemNumLayers - 1)) + [outDim]
if addLoc:
images, inDim = ops.addLocation(images, inDim, config.locationDim,
h = self.H, w = self.W, locType = config.locationType)
dims[0] = inDim
# if config.locationType == "PE":
# dims[-1] /= 4
# dims[-1] *= 3
# else:
# dims[-1] -= 2
features = ops.CNNLayer(images, dims,
batchNorm = self.batchNorm if config.stemBN else None,
dropout = self.dropouts["stem"],
kernelSizes = config.stemKernelSizes,
strides = config.stemStrideSizes)
# if addLoc:
# lDim = outDim / 4
# lDim /= 4
# features, _ = addLocation(features, dims[-1], lDim, h = H, w = W,
# locType = config.locationType)
if config.stemGridRnn:
features = ops.multigridRNNLayer(features, H, W, outDim)
# flatten the 2d images into a 1d KB
features = tf.reshape(features, (self.batchSize, -1, outDim))
return features
# Embed question using parametrized word embeddings.
# The embedding are initialized to the values supported to the class initialization
def qEmbeddingsOp(self, qIndices, embInit):
with tf.variable_scope("qEmbeddings"):
# if config.useCPU:
# with tf.device('/cpu:0'):
# embeddingsVar = tf.Variable(self.embeddingsInit, name = "embeddings", dtype = tf.float32)
# else:
# embeddingsVar = tf.Variable(self.embeddingsInit, name = "embeddings", dtype = tf.float32)
embeddingsVar = tf.get_variable("emb", initializer = tf.to_float(embInit),
dtype = tf.float32, trainable = (not config.wrdEmbFixed))
embeddings = tf.concat([tf.zeros((1, config.wrdEmbDim)), embeddingsVar], axis = 0)
questions = tf.nn.embedding_lookup(embeddings, qIndices)
return questions, embeddings
# Embed answer words
def aEmbeddingsOp(self, embInit):
with tf.variable_scope("aEmbeddings"):
if embInit is None:
return None
answerEmbeddings = tf.get_variable("emb", initializer = tf.to_float(embInit),
dtype = tf.float32)
return answerEmbeddings
# Embed question and answer words with tied embeddings
def qaEmbeddingsOp(self, qIndices, embInit):
questions, qaEmbeddings = self.qEmbeddingsOp(qIndices, embInit["qa"])
aEmbeddings = tf.nn.embedding_lookup(qaEmbeddings, embInit["ansMap"])
return questions, qaEmbeddings, aEmbeddings
'''
Embed question (and optionally answer) using parametrized word embeddings.
The embedding are initialized to the values supported to the class initialization
'''
def embeddingsOp(self, qIndices, embInit):
if config.ansEmbMod == "SHARED":
questions, qEmb, aEmb = self.qaEmbeddingsOp(qIndices, embInit)
else:
questions, qEmb = self.qEmbeddingsOp(qIndices, embInit["q"])
aEmb = self.aEmbeddingsOp(embInit["a"])
return questions, qEmb, aEmb
'''
The Question Input Unit embeds the questions to randomly-initialized word vectors,
and runs a recurrent bidirectional encoder (RNN/LSTM etc.) that gives back
vector representations for each question (the RNN final hidden state), and
representations for each of the question words (the RNN outputs for each word).
The method uses bidirectional LSTM, by default.
Optionally projects the outputs of the LSTM (with linear projection /
optionally with some activation).
Args:
questions: question word embeddings
[batchSize, questionLength, wordEmbDim]
questionLengths: the question lengths.
[batchSize]
projWords: True to apply projection on RNN outputs.
projQuestion: True to apply projection on final RNN state.
projDim: projection dimension in case projection is applied.
Returns:
Contextual Words: RNN outputs for the words.
[batchSize, questionLength, ctrlDim]
Vectorized Question: Final hidden state representing the whole question.
[batchSize, ctrlDim]
'''
def encoder(self, questions, questionLengths, projWords = False,
projQuestion = False, projDim = None):
with tf.variable_scope("encoder"):
# variational dropout option
varDp = None
if config.encVariationalDropout:
varDp = {"stateDp": self.dropouts["stateInput"],
"inputDp": self.dropouts["encInput"],
"inputSize": config.wrdEmbDim}
# rnns
for i in range(config.encNumLayers):
questionCntxWords, vecQuestions = ops.RNNLayer(questions, questionLengths,
config.encDim, bi = config.encBi, cellType = config.encType,
dropout = self.dropouts["encInput"], varDp = varDp, name = "rnn%d" % i)
# dropout for the question vector
vecQuestions = tf.nn.dropout(vecQuestions, self.dropouts["question"])
# projection of encoder outputs
if projWords:
questionCntxWords = ops.linear(questionCntxWords, config.encDim, projDim,
name = "projCW")
if projQuestion:
vecQuestions = ops.linear(vecQuestions, config.encDim, projDim,
act = config.encProjQAct, name = "projQ")
return questionCntxWords, vecQuestions
'''
Stacked Attention Layer for baseline. Computes interaction between images
and the previous memory, and casts it back to compute attention over the
image, which in turn is summed up with the previous memory to result in the
new one.
Args:
images: input image.
[batchSize, H * W, inDim]
memory: previous memory value
[batchSize, inDim]
inDim: inputs dimension
hDim: hidden dimension to compute interactions between image and memory
Returns the new memory value.
'''
def baselineAttLayer(self, images, memory, inDim, hDim, name = "", reuse = None):
with tf.variable_scope("attLayer" + name, reuse = reuse):
# projImages = ops.linear(images, inDim, hDim, name = "projImage")
# projMemory = tf.expand_dims(ops.linear(memory, inDim, hDim, name = "projMemory"), axis = -2)
# if config.saMultiplicative:
# interactions = projImages * projMemory
# else:
# interactions = tf.tanh(projImages + projMemory)
interactions, _ = ops.mul(images, memory, inDim, proj = {"dim": hDim, "shared": False},
interMod = config.baselineAttType)
attention = ops.inter2att(interactions, hDim)
summary = ops.att2Smry(attention, images)
newMemory = memory + summary
return newMemory
'''
Baseline approach:
If baselineAtt is True, applies several layers (baselineAttNumLayers)
of stacked attention to image and memory, when memory is initialized
to the vector questions. See baselineAttLayer for further details.
Otherwise, computes result output features based on image representation
(baselineCNN), or question (baselineLSTM) or both.
Args:
vecQuestions: question vector representation
[batchSize, questionDim]
questionDim: dimension of question vectors
images: (flattened) image representation
[batchSize, imageDim]
imageDim: dimension of image representations.
hDim: hidden dimension to compute interactions between image and memory
(for attention-based baseline).
Returns final features to use in later classifier.
[batchSize, outDim] (out dimension depends on baseline method)
'''
def baseline(self, vecQuestions, questionDim, images, imageDim, hDim):
with tf.variable_scope("baseline"):
if config.baselineAtt:
memory = self.linear(vecQuestions, questionDim, hDim, name = "qProj")
images = self.linear(images, imageDim, hDim, name = "iProj")
for i in range(config.baselineAttNumLayers):
memory = self.baselineAttLayer(images, memory, hDim, hDim,
name = "baseline%d" % i)
memDim = hDim
else:
images, imagesDim = ops.linearizeFeatures(images, self.H, self.W,
imageDim, projDim = config.baselineProjDim)
if config.baselineLSTM and config.baselineCNN:
memory = tf.concat([vecQuestions, images], axis = -1)
memDim = questionDim + imageDim
elif config.baselineLSTM:
memory = vecQuestions
memDim = questionDim
else: # config.baselineCNN
memory = images
memDim = imageDim
return memory, memDim
'''
Runs the MAC recurrent network to perform the reasoning process.
Initializes a MAC cell and runs netLength iterations.
Currently it passes the question and knowledge base to the cell during
its creating, such that it doesn't need to interact with it through
inputs / outputs while running. The recurrent computation happens
by working iteratively over the hidden (control, memory) states.
Args:
images: flattened image features. Used as the "Knowledge Base".
(Received by default model behavior from the Image Input Units).
[batchSize, H * W, memDim]
vecQuestions: vector questions representations.
(Received by default model behavior from the Question Input Units
as the final RNN state).
[batchSize, ctrlDim]
questionWords: question word embeddings.
[batchSize, questionLength, ctrlDim]
questionCntxWords: question contextual words.
(Received by default model behavior from the Question Input Units
as the series of RNN output states).
[batchSize, questionLength, ctrlDim]
questionLengths: question lengths.
[batchSize]
Returns the final control state and memory state resulted from the network.
([batchSize, ctrlDim], [bathSize, memDim])
'''
def MACnetwork(self, images, vecQuestions, questionWords, questionCntxWords,
questionLengths, name = "", reuse = None):
with tf.variable_scope("MACnetwork" + name, reuse = reuse):
self.macCell = MACCell(
vecQuestions = vecQuestions,
questionWords = questionWords,
questionCntxWords = questionCntxWords,
questionLengths = questionLengths,
knowledgeBase = images,
memoryDropout = self.dropouts["memory"],
readDropout = self.dropouts["read"],
writeDropout = self.dropouts["write"],
# qDropoutMAC = self.qDropoutMAC,
batchSize = self.batchSize,
train = self.train,
reuse = reuse)
state = self.macCell.zero_state(self.batchSize, tf.float32)
# inSeq = tf.unstack(inSeq, axis = 1)
none = tf.zeros((self.batchSize, 1), dtype = tf.float32)
# for i, inp in enumerate(inSeq):
for i in range(config.netLength):
self.macCell.iteration = i
# if config.unsharedCells:
# with tf.variable_scope("iteration%d" % i):
# macCell.myNameScope = "iteration%d" % i
_, state = self.macCell(none, state)
# else:
# _, state = macCell(none, state)
# macCell.reuse = True
# self.autoEncMMLoss = macCell.autoEncMMLossI
# inputSeqL = None
# _, lastOutputs = tf.nn.dynamic_rnn(macCell, inputSeq, # / static
# sequence_length = inputSeqL,
# initial_state = initialState,
# swap_memory = True)
# self.postModules = None
# if (config.controlPostRNN or config.selfAttentionMod == "POST"): # may not work well with dlogits
# self.postModules, _ = self.RNNLayer(cLogits, None, config.encDim, bi = False,
# name = "decPostRNN", cellType = config.controlPostRNNmod)
# if config.controlPostRNN:
# logits = self.postModules
# self.postModules = tf.unstack(self.postModules, axis = 1)
# self.autoEncCtrlLoss = tf.constant(0.0)
# if config.autoEncCtrl:
# autoEncCtrlCellType = ("GRU" if config.autoEncCtrlGRU else "RNN")
# autoEncCtrlinp = logits
# _, autoEncHid = self.RNNLayer(autoEncCtrlinp, None, config.encDim,
# bi = True, name = "autoEncCtrl", cellType = autoEncCtrlCellType)
# self.autoEncCtrlLoss = (tf.nn.l2_loss(vecQuestions - autoEncHid)) / tf.to_float(self.batchSize)
finalControl = state.control
finalMemory = state.memory
return finalControl, finalMemory
'''
Output Unit (step 1): chooses the inputs to the output classifier.
By default the classifier input will be the the final memory state of the MAC network.
If outQuestion is True, concatenate the question representation to that.
If outImage is True, concatenate the image flattened representation.
Args:
memory: (final) memory state of the MAC network.
[batchSize, memDim]
vecQuestions: question vector representation.
[batchSize, ctrlDim]
images: image features.
[batchSize, H, W, imageInDim]
imageInDim: images dimension.
Returns the resulted features and their dimension.
'''
def outputOp(self, memory, vecQuestions, images, imageInDim):
with tf.variable_scope("outputUnit"):
features = memory
dim = config.memDim
if config.outQuestion:
eVecQuestions = ops.linear(vecQuestions, config.ctrlDim, config.memDim, name = "outQuestion")
features, dim = ops.concat(features, eVecQuestions, config.memDim, mul = config.outQuestionMul)
if config.outImage:
images, imagesDim = ops.linearizeFeatures(images, self.H, self.W, self.imageInDim,
outputDim = config.outImageDim)
images = ops.linear(images, config.memDim, config.outImageDim, name = "outImage")
features = tf.concat([features, images], axis = -1)
dim += config.outImageDim
return features, dim
'''
Output Unit (step 2): Computes the logits for the answers. Passes the features
through fully-connected network to get the logits over the possible answers.
Optionally uses answer word embeddings in computing the logits (by default, it doesn't).
Args:
features: features used to compute logits
[batchSize, inDim]
inDim: features dimension
aEmbedding: supported word embeddings for answer words in case answerMod is not NON.
Optionally computes logits by computing dot-product with answer embeddings.
Returns: the computed logits.
[batchSize, answerWordsNum]
'''
def classifier(self, features, inDim, aEmbeddings = None):
with tf.variable_scope("classifier"):
outDim = config.answerWordsNum
dims = [inDim] + config.outClassifierDims + [outDim]
if config.answerMod != "NON":
dims[-1] = config.wrdEmbDim
logits = ops.FCLayer(features, dims,
batchNorm = self.batchNorm if config.outputBN else None,
dropout = self.dropouts["output"])
if config.answerMod != "NON":
logits = tf.nn.dropout(logits, self.dropouts["output"])
interactions = ops.mul(aEmbeddings, logits, dims[-1], interMod = config.answerMod)
logits = ops.inter2logits(interactions, dims[-1], sumMod = "SUM")
logits += ops.getBias((outputDim, ), "ans")
# answersWeights = tf.transpose(aEmbeddings)
# if config.answerMod == "BL":
# Wans = ops.getWeight((dims[-1], config.wrdEmbDim), "ans")
# logits = tf.matmul(logits, Wans)
# elif config.answerMod == "DIAG":
# Wans = ops.getWeight((config.wrdEmbDim, ), "ans")
# logits = logits * Wans
# logits = tf.matmul(logits, answersWeights)
return logits
# def getTemp():
# with tf.variable_scope("temperature"):
# if config.tempParametric:
# self.temperatureVar = tf.get_variable("temperature", shape = (),
# initializer = tf.constant_initializer(5), dtype = tf.float32)
# temperature = tf.sigmoid(self.temperatureVar)
# else:
# temperature = config.temperature
# if config.tempDynamic:
# temperature *= self.tempAnnealRate
# return temperature
# Computes mean cross entropy loss between logits and answers.
def addAnswerLossOp(self, logits, answers):
with tf.variable_scope("answerLoss"):
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels = answers, logits = logits)
loss = tf.reduce_mean(losses)
self.answerLossList.append(loss)
return loss, losses
# Computes predictions (by finding maximal logit value, corresponding to highest probability)
# and mean accuracy between predictions and answers.
def addPredOp(self, logits, answers):
with tf.variable_scope("pred"):
preds = tf.to_int32(tf.argmax(logits, axis = -1)) # tf.nn.softmax(
corrects = tf.equal(preds, answers)
correctNum = tf.reduce_sum(tf.to_int32(corrects))
acc = tf.reduce_mean(tf.to_float(corrects))
self.correctNumList.append(correctNum)
self.answerAccList.append(acc)
return preds, corrects, correctNum
# Creates optimizer (adam)
def addOptimizerOp(self):
with tf.variable_scope("trainAddOptimizer"):
self.globalStep = tf.Variable(0, dtype = tf.int32, trainable = False, name = "globalStep") # init to 0 every run?
optimizer = tf.train.AdamOptimizer(learning_rate = self.lr)
return optimizer
'''
Computes gradients for all variables or subset of them, based on provided loss,
using optimizer.
'''
def computeGradients(self, optimizer, loss, trainableVars = None): # tf.trainable_variables()
with tf.variable_scope("computeGradients"):
if config.trainSubset:
trainableVars = []
allVars = tf.trainable_variables()
for var in allVars:
if any((s in var.name) for s in config.varSubset):
trainableVars.append(var)
gradients_vars = optimizer.compute_gradients(loss, trainableVars)
return gradients_vars
'''
Apply gradients. Optionally clip them, and update exponential moving averages
for parameters.
'''
def addTrainingOp(self, optimizer, gradients_vars):
with tf.variable_scope("train"):
gradients, variables = zip(*gradients_vars)
norm = tf.global_norm(gradients)
# gradient clipping
if config.clipGradients:
clippedGradients, _ = tf.clip_by_global_norm(gradients, config.gradMaxNorm, use_norm = norm)
gradients_vars = zip(clippedGradients, variables)
# updates ops (for batch norm) and train op
updateOps = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(updateOps):
train = optimizer.apply_gradients(gradients_vars, global_step = self.globalStep)
# exponential moving average
if config.useEMA:
ema = tf.train.ExponentialMovingAverage(decay = config.emaDecayRate)
maintainAveragesOp = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train]):
trainAndUpdateOp = tf.group(maintainAveragesOp)
train = trainAndUpdateOp
self.emaDict = ema.variables_to_restore()
return train, norm
# TODO (add back support for multi-gpu..)
def averageAcrossTowers(self, gpusNum):
self.lossAll = self.lossList[0]
self.answerLossAll = self.answerLossList[0]
self.correctNumAll = self.correctNumList[0]
self.answerAccAll = self.answerAccList[0]
self.predsAll = self.predsList[0]
self.gradientVarsAll = self.gradientVarsList[0]
def trim2DVectors(self, vectors, vectorsLengths):
maxLength = np.max(vectorsLengths)
return vectors[:,:maxLength]
def trimData(self, data):
data["question"] = self.trim2DVectors(data["question"], data["questionLength"])
return data
'''
Builds predictions JSON, by adding the model's predictions and attention maps
back to the original data JSON.
'''
def buildPredsList(self, prediction):
return self.answerDict.decodeId(prediction)
'''
Processes a batch of data with the model.
Args:
sess: TF session
data: Data batch. Dictionary that contains numpy array for:
questions, questionLengths, answers.
See preprocess.py for further information of the batch structure.
images: batch of image features, as numpy array. images["images"] contains
[batchSize, channels, h, w]
train: True to run batch for training.
getAtt: True to return attention maps for question and image (and optionally
self-attention and gate values).
Returns results: e.g. loss, accuracy, running time.
'''
def runBatch(self, sess, data, images, train, getAtt = False):
data = self.trimData(data)
predsOp = self.predsAll
time0 = time.time()
feed = self.createFeedDict(data, images, train)
time1 = time.time()
predsInfo = sess.run(
predsOp,
feed_dict = feed)
time2 = time.time()
predsList = self.buildPredsList(predsInfo[0])
return predsList
def build(self):
self.addPlaceholders()
self.optimizer = self.addOptimizerOp()
self.gradientVarsList = []
self.lossList = []
self.answerLossList = []
self.correctNumList = []
self.answerAccList = []
self.predsList = []
with tf.variable_scope("macModel"):
for i in range(config.gpusNum):
with tf.device("/gpu:{}".format(i)):
with tf.name_scope("tower{}".format(i)) as scope:
self.initTowerBatch(i, config.gpusNum, self.batchSizeAll)
self.loss = tf.constant(0.0)
# embed questions words (and optionally answer words)
questionWords, qEmbeddings, aEmbeddings = \
self.embeddingsOp(self.questionsIndices, self.embeddingsInit)
projWords = projQuestion = ((config.encDim != config.ctrlDim) or config.encProj)
questionCntxWords, vecQuestions = self.encoder(questionWords,
self.questionLengths, projWords, projQuestion, config.ctrlDim)
# Image Input Unit (stem)
imageFeatures = self.stem(self.images, self.imageInDim, config.memDim)
# baseline model
if config.useBaseline:
output, dim = self.baseline(vecQuestions, config.ctrlDim,
self.images, self.imageInDim, config.attDim)
# MAC model
else:
# self.temperature = self.getTemp()
finalControl, finalMemory = self.MACnetwork(imageFeatures, vecQuestions,
questionWords, questionCntxWords, self.questionLengths)
# Output Unit - step 1 (preparing classifier inputs)
output, dim = self.outputOp(finalMemory, vecQuestions,
self.images, self.imageInDim)
# Output Unit - step 2 (classifier)
logits = self.classifier(output, dim, aEmbeddings)
# compute loss, predictions, accuracy
answerLoss, self.losses = self.addAnswerLossOp(logits, self.answersIndices)
self.preds, self.corrects, self.correctNum = self.addPredOp(logits, self.answersIndices)
self.loss += answerLoss
self.predsList.append(self.preds)
self.lossList.append(self.loss)
# compute gradients
gradient_vars = self.computeGradients(self.optimizer, self.loss, trainableVars = None)
self.gradientVarsList.append(gradient_vars)
# reuse variables in next towers
tf.get_variable_scope().reuse_variables()
self.averageAcrossTowers(config.gpusNum)
self.trainOp, self.gradNorm = self.addTrainingOp(self.optimizer, self.gradientVarsAll)
self.noOp = tf.no_op()
|