Spaces:
Runtime error
Runtime error
File size: 37,040 Bytes
b2b46fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 |
from __future__ import division
import math
import tensorflow as tf
from mi_gru_cell import MiGRUCell
from mi_lstm_cell import MiLSTMCell
from config import config
eps = 1e-20
inf = 1e30
####################################### variables ########################################
'''
Initializes a weight matrix variable given a shape and a name.
Uses random_normal initialization if 1d, otherwise uses xavier.
'''
def getWeight(shape, name = ""):
with tf.variable_scope("weights"):
initializer = tf.contrib.layers.xavier_initializer()
# if len(shape) == 1: # good?
# initializer = tf.random_normal_initializer()
W = tf.get_variable("weight" + name, shape = shape, initializer = initializer)
return W
'''
Initializes a weight matrix variable given a shape and a name. Uses xavier
'''
def getKernel(shape, name = ""):
with tf.variable_scope("kernels"):
initializer = tf.contrib.layers.xavier_initializer()
W = tf.get_variable("kernel" + name, shape = shape, initializer = initializer)
return W
'''
Initializes a bias variable given a shape and a name.
'''
def getBias(shape, name = ""):
with tf.variable_scope("biases"):
initializer = tf.zeros_initializer()
b = tf.get_variable("bias" + name, shape = shape, initializer = initializer)
return b
######################################### basics #########################################
'''
Multiplies input inp of any depth by a 2d weight matrix.
'''
# switch with conv 1?
def multiply(inp, W):
inDim = tf.shape(W)[0]
outDim = tf.shape(W)[1]
newDims = tf.concat([tf.shape(inp)[:-1], tf.fill((1,), outDim)], axis = 0)
inp = tf.reshape(inp, (-1, inDim))
output = tf.matmul(inp, W)
output = tf.reshape(output, newDims)
return output
'''
Concatenates x and y. Support broadcasting.
Optionally concatenate multiplication of x * y
'''
def concat(x, y, dim, mul = False, extendY = False):
if extendY:
y = tf.expand_dims(y, axis = -2)
# broadcasting to have the same shape
y = tf.zeros_like(x) + y
if mul:
out = tf.concat([x, y, x * y], axis = -1)
dim *= 3
else:
out = tf.concat([x, y], axis = -1)
dim *= 2
return out, dim
'''
Adds L2 regularization for weight and kernel variables.
'''
# add l2 in the tf way
def L2RegularizationOp(l2 = None):
if l2 is None:
l2 = config.l2
l2Loss = 0
names = ["weight", "kernel"]
for var in tf.trainable_variables():
if any((name in var.name.lower()) for name in names):
l2Loss += tf.nn.l2_loss(var)
return l2 * l2Loss
######################################### attention #########################################
'''
Transform vectors to scalar logits.
Args:
interactions: input vectors
[batchSize, N, dim]
dim: dimension of input vectors
sumMod: LIN for linear transformation to scalars.
SUM to sum up vectors entries to get scalar logit.
dropout: dropout value over inputs (for linear case)
Return matching scalar for each interaction.
[batchSize, N]
'''
sumMod = ["LIN", "SUM"]
def inter2logits(interactions, dim, sumMod = "LIN", dropout = 1.0, name = "", reuse = None):
with tf.variable_scope("inter2logits" + name, reuse = reuse):
if sumMod == "SUM":
logits = tf.reduce_sum(interactions, axis = -1)
else: # "LIN"
logits = linear(interactions, dim, 1, dropout = dropout, name = "logits")
return logits
'''
Transforms vectors to probability distribution.
Calls inter2logits and then softmax over these.
Args:
interactions: input vectors
[batchSize, N, dim]
dim: dimension of input vectors
sumMod: LIN for linear transformation to scalars.
SUM to sum up vectors entries to get scalar logit.
dropout: dropout value over inputs (for linear case)
Return attention distribution over interactions.
[batchSize, N]
'''
def inter2att(interactions, dim, dropout = 1.0, name = "", reuse = None):
with tf.variable_scope("inter2att" + name, reuse = reuse):
logits = inter2logits(interactions, dim, dropout = dropout)
attention = tf.nn.softmax(logits)
return attention
'''
Sums up features using attention distribution to get a weighted average over them.
'''
def att2Smry(attention, features):
return tf.reduce_sum(tf.expand_dims(attention, axis = -1) * features, axis = -2)
####################################### activations ########################################
'''
Performs a variant of ReLU based on config.relu
PRM for PReLU
ELU for ELU
LKY for Leaky ReLU
otherwise, standard ReLU
'''
def relu(inp):
if config.relu == "PRM":
with tf.variable_scope(None, default_name = "prelu"):
alpha = tf.get_variable("alpha", shape = inp.get_shape()[-1],
initializer = tf.constant_initializer(0.25))
pos = tf.nn.relu(inp)
neg = - (alpha * tf.nn.relu(-inp))
output = pos + neg
elif config.relu == "ELU":
output = tf.nn.elu(inp)
# elif config.relu == "SELU":
# output = tf.nn.selu(inp)
elif config.relu == "LKY":
# output = tf.nn.leaky_relu(inp, config.reluAlpha)
output = tf.maximum(inp, config.reluAlpha * inp)
elif config.relu == "STD": # STD
output = tf.nn.relu(inp)
return output
activations = {
"NON": tf.identity, # lambda inp: inp
"TANH": tf.tanh,
"SIGMOID": tf.sigmoid,
"RELU": relu,
"ELU": tf.nn.elu
}
# Sample from Gumbel(0, 1)
def sampleGumbel(shape):
U = tf.random_uniform(shape, minval = 0, maxval = 1)
return -tf.log(-tf.log(U + eps) + eps)
# Draw a clevr_sample from the Gumbel-Softmax distribution
def gumbelSoftmaxSample(logits, temperature):
y = logits + sampleGumbel(tf.shape(logits))
return tf.nn.softmax(y / temperature)
def gumbelSoftmax(logits, temperature, train): # hard = False
# Sample from the Gumbel-Softmax distribution and optionally discretize.
# Args:
# logits: [batch_size, n_class] unnormalized log-probs
# temperature: non-negative scalar
# hard: if True, take argmax, but differentiate w.r.t. soft clevr_sample y
# Returns:
# [batch_size, n_class] clevr_sample from the Gumbel-Softmax distribution.
# If hard=True, then the returned clevr_sample will be one-hot, otherwise it will
# be a probabilitiy distribution that sums to 1 across classes
y = gumbelSoftmaxSample(logits, temperature)
# k = tf.shape(logits)[-1]
# yHard = tf.cast(tf.one_hot(tf.argmax(y,1),k), y.dtype)
yHard = tf.cast(tf.equal(y, tf.reduce_max(y, 1, keep_dims = True)), y.dtype)
yNew = tf.stop_gradient(yHard - y) + y
if config.gumbelSoftmaxBoth:
return y
if config.gumbelArgmaxBoth:
return yNew
ret = tf.cond(train, lambda: y, lambda: yNew)
return ret
def softmaxDiscrete(logits, temperature, train):
if config.gumbelSoftmax:
return gumbelSoftmax(logits, temperature = temperature, train = train)
else:
return tf.nn.softmax(logits)
def parametricDropout(name, train):
var = tf.get_variable("varDp" + name, shape = (), initializer = tf.constant_initializer(2),
dtype = tf.float32)
dropout = tf.cond(train, lambda: tf.sigmoid(var), lambda: 1.0)
return dropout
###################################### sequence helpers ######################################
'''
Casts exponential mask over a sequence with sequence length.
Used to prepare logits before softmax.
'''
def expMask(seq, seqLength):
maxLength = tf.shape(seq)[-1]
mask = (1 - tf.cast(tf.sequence_mask(seqLength, maxLength), tf.float32)) * (-inf)
masked = seq + mask
return masked
'''
Computes seq2seq loss between logits and target sequences, with given lengths.
'''
def seq2SeqLoss(logits, targets, lengths):
mask = tf.sequence_mask(lengths, maxlen = tf.shape(targets)[1])
loss = tf.contrib.seq2seq.sequence_loss(logits, targets, tf.to_float(mask))
return loss
'''
Computes seq2seq loss between logits and target sequences, with given lengths.
acc1: accuracy per symbol
acc2: accuracy per sequence
'''
def seq2seqAcc(preds, targets, lengths):
mask = tf.sequence_mask(lengths, maxlen = tf.shape(targets)[1])
corrects = tf.logical_and(tf.equal(preds, targets), mask)
numCorrects = tf.reduce_sum(tf.to_int32(corrects), axis = 1)
acc1 = tf.to_float(numCorrects) / (tf.to_float(lengths) + eps) # add small eps instead?
acc1 = tf.reduce_mean(acc1)
acc2 = tf.to_float(tf.equal(numCorrects, lengths))
acc2 = tf.reduce_mean(acc2)
return acc1, acc2
########################################### linear ###########################################
'''
linear transformation.
Args:
inp: input to transform
inDim: input dimension
outDim: output dimension
dropout: dropout over input
batchNorm: if not None, applies batch normalization to inputs
addBias: True to add bias
bias: initial bias value
act: if not None, activation to use after linear transformation
actLayer: if True and act is not None, applies another linear transformation on top of previous
actDropout: dropout to apply in the optional second linear transformation
retVars: if True, return parameters (weight and bias)
Returns linear transformation result.
'''
# batchNorm = {"decay": float, "train": Tensor}
# actLayer: if activation is not non, stack another linear layer
# maybe change naming scheme such that if name = "" than use it as default_name (-->unique?)
def linear(inp, inDim, outDim, dropout = 1.0,
batchNorm = None, addBias = True, bias = 0.0,
act = "NON", actLayer = True, actDropout = 1.0,
retVars = False, name = "", reuse = None):
with tf.variable_scope("linearLayer" + name, reuse = reuse):
W = getWeight((inDim, outDim) if outDim > 1 else (inDim, ))
b = getBias((outDim, ) if outDim > 1 else ()) + bias
if batchNorm is not None:
inp = tf.contrib.layers.batch_norm(inp, decay = batchNorm["decay"],
center = True, scale = True, is_training = batchNorm["train"], updates_collections = None)
# tf.layers.batch_normalization, axis -1 ?
inp = tf.nn.dropout(inp, dropout)
if outDim > 1:
output = multiply(inp, W)
else:
output = tf.reduce_sum(inp * W, axis = -1)
if addBias:
output += b
output = activations[act](output)
# good?
if act != "NON" and actLayer:
output = linear(output, outDim, outDim, dropout = actDropout, batchNorm = batchNorm,
addBias = addBias, act = "NON", actLayer = False,
name = name + "_2", reuse = reuse)
if retVars:
return (output, (W, b))
return output
'''
Computes Multi-layer feed-forward network.
Args:
features: input features
dims: list with dimensions of network.
First dimension is of the inputs, final is of the outputs.
batchNorm: if not None, applies batchNorm
dropout: dropout value to apply for each layer
act: activation to apply between layers.
NON, TANH, SIGMOID, RELU, ELU
'''
# no activation after last layer
# batchNorm = {"decay": float, "train": Tensor}
def FCLayer(features, dims, batchNorm = None, dropout = 1.0, act = "RELU"):
layersNum = len(dims) - 1
for i in range(layersNum):
features = linear(features, dims[i], dims[i+1], name = "fc_%d" % i,
batchNorm = batchNorm, dropout = dropout)
# not the last layer
if i < layersNum - 1:
features = activations[act](features)
return features
###################################### cnns ######################################
'''
Computes convolution.
Args:
inp: input features
inDim: input dimension
outDim: output dimension
batchNorm: if not None, applies batchNorm on inputs
dropout: dropout value to apply on inputs
addBias: True to add bias
kernelSize: kernel size
stride: stride size
act: activation to apply on outputs
NON, TANH, SIGMOID, RELU, ELU
'''
# batchNorm = {"decay": float, "train": Tensor, "center": bool, "scale": bool}
# collections.namedtuple("batchNorm", ("decay", "train"))
def cnn(inp, inDim, outDim, batchNorm = None, dropout = 1.0, addBias = True,
kernelSize = None, stride = 1, act = "NON", name = "", reuse = None):
with tf.variable_scope("cnnLayer" + name, reuse = reuse):
if kernelSize is None:
kernelSize = config.stemKernelSize
kernelH = kernelW = kernelSize
kernel = getKernel((kernelH, kernelW, inDim, outDim))
b = getBias((outDim, ))
if batchNorm is not None:
inp = tf.contrib.layers.batch_norm(inp, decay = batchNorm["decay"], center = batchNorm["center"],
scale = batchNorm["scale"], is_training = batchNorm["train"], updates_collections = None)
inp = tf.nn.dropout(inp, dropout)
output = tf.nn.conv2d(inp, filter = kernel, strides = [1, stride, stride, 1], padding = "SAME")
if addBias:
output += b
output = activations[act](output)
return output
'''
Computes Multi-layer convolutional network.
Args:
features: input features
dims: list with dimensions of network.
First dimension is of the inputs. Final is of the outputs.
batchNorm: if not None, applies batchNorm
dropout: dropout value to apply for each layer
kernelSizes: list of kernel sizes for each layer. Default to config.stemKernelSize
strides: list of strides for each layer. Default to 1.
act: activation to apply between layers.
NON, TANH, SIGMOID, RELU, ELU
'''
# batchNorm = {"decay": float, "train": Tensor, "center": bool, "scale": bool}
# activation after last layer
def CNNLayer(features, dims, batchNorm = None, dropout = 1.0,
kernelSizes = None, strides = None, act = "RELU"):
layersNum = len(dims) - 1
if kernelSizes is None:
kernelSizes = [config.stemKernelSize for i in range(layersNum)]
if strides is None:
strides = [1 for i in range(layersNum)]
for i in range(layersNum):
features = cnn(features, dims[i], dims[i+1], name = "cnn_%d" % i, batchNorm = batchNorm,
dropout = dropout, kernelSize = kernelSizes[i], stride = strides[i], act = act)
return features
######################################## location ########################################
'''
Computes linear positional encoding for h x w grid.
If outDim positive, casts positions to that dimension.
'''
# ignores dim
# h,w can be tensor scalars
def locationL(h, w, dim, outDim = -1, addBias = True):
dim = 2
grid = tf.stack(tf.meshgrid(tf.linspace(-config.locationBias, config.locationBias, w),
tf.linspace(-config.locationBias, config.locationBias, h)), axis = -1)
if outDim > 0:
grid = linear(grid, dim, outDim, addBias = addBias, name = "locationL")
dim = outDim
return grid, dim
'''
Computes sin/cos positional encoding for h x w x (4*dim).
If outDim positive, casts positions to that dimension.
Based on positional encoding presented in "Attention is all you need"
'''
# dim % 4 = 0
# h,w can be tensor scalars
def locationPE(h, w, dim, outDim = -1, addBias = True):
x = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, w)), axis = -1)
y = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, h)), axis = -1)
i = tf.expand_dims(tf.to_float(tf.range(dim)), axis = 0)
peSinX = tf.sin(x / (tf.pow(10000.0, i / dim)))
peCosX = tf.cos(x / (tf.pow(10000.0, i / dim)))
peSinY = tf.sin(y / (tf.pow(10000.0, i / dim)))
peCosY = tf.cos(y / (tf.pow(10000.0, i / dim)))
peSinX = tf.tile(tf.expand_dims(peSinX, axis = 0), [h, 1, 1])
peCosX = tf.tile(tf.expand_dims(peCosX, axis = 0), [h, 1, 1])
peSinY = tf.tile(tf.expand_dims(peSinY, axis = 1), [1, w, 1])
peCosY = tf.tile(tf.expand_dims(peCosY, axis = 1), [1, w, 1])
grid = tf.concat([peSinX, peCosX, peSinY, peCosY], axis = -1)
dim *= 4
if outDim > 0:
grid = linear(grid, dim, outDim, addBias = addBias, name = "locationPE")
dim = outDim
return grid, dim
locations = {
"L": locationL,
"PE": locationPE
}
'''
Adds positional encoding to features. May ease spatial reasoning.
(although not used in the default model).
Args:
features: features to add position encoding to.
[batchSize, h, w, c]
inDim: number of features' channels
lDim: dimension for positional encodings
outDim: if positive, cast enhanced features (with positions) to that dimension
h: features' height
w: features' width
locType: L for linear encoding, PE for cos/sin based positional encoding
mod: way to add positional encoding: concatenation (CNCT), addition (ADD),
multiplication (MUL), linear transformation (LIN).
'''
mods = ["CNCT", "ADD", "LIN", "MUL"]
# if outDim = -1, then will be set based on inDim, lDim
def addLocation(features, inDim, lDim, outDim = -1, h = None, w = None,
locType = "L", mod = "CNCT", name = "", reuse = None): # h,w not needed
with tf.variable_scope("addLocation" + name, reuse = reuse):
batchSize = tf.shape(features)[0]
if h is None:
h = tf.shape(features)[1]
if w is None:
w = tf.shape(features)[2]
dim = inDim
if mod == "LIN":
if outDim < 0:
outDim = dim
grid, _ = locations[locType](h, w, lDim, outDim = outDim, addBias = False)
features = linear(features, dim, outDim, name = "LIN")
features += grid
return features, outDim
if mod == "CNCT":
grid, lDim = locations[locType](h, w, lDim)
# grid = tf.zeros_like(features) + grid
grid = tf.tile(tf.expand_dims(grid, axis = 0), [batchSize, 1, 1, 1])
features = tf.concat([features, grid], axis = -1)
dim += lDim
elif mod == "ADD":
grid, _ = locations[locType](h, w, lDim, outDim = dim)
features += grid
elif mod == "MUL": # MUL
grid, _ = locations[locType](h, w, lDim, outDim = dim)
if outDim < 0:
outDim = dim
grid = tf.tile(tf.expand_dims(grid, axis = 0), [batchSize, 1, 1, 1])
features = tf.concat([features, grid, features * grid], axis = -1)
dim *= 3
if outDim > 0:
features = linear(features, dim, outDim)
dim = outDim
return features, dim
# config.locationAwareEnd
# H, W, _ = config.imageDims
# projDim = config.stemProjDim
# k = config.stemProjPooling
# projDim on inDim or on out
# inDim = tf.shape(features)[3]
'''
Linearize 2d image to linear vector.
Args:
features: batch of 2d images.
[batchSize, h, w, inDim]
h: image height
w: image width
inDim: number of channels
projDim: if not None, project image to that dimension before linearization
outDim: if not None, project image to that dimension after linearization
loc: if not None, add positional encoding:
locType: L for linear encoding, PE for cos/sin based positional encoding
mod: way to add positional encoding: concatenation (CNCT), addition (ADD),
multiplication (MUL), linear transformation (LIN).
pooling: number to pool image with before linearization.
Returns linearized image:
[batchSize, outDim] (or [batchSize, (h / pooling) * (w /pooling) * projDim] if outDim not supported)
'''
# loc = {"locType": str, "mod": str}
def linearizeFeatures(features, h, w, inDim, projDim = None, outDim = None,
loc = None, pooling = None):
if pooling is None:
pooling = config.imageLinPool
if loc is not None:
features = addLocation(features, inDim, lDim = inDim, outDim = inDim,
locType = loc["locType"], mod = loc["mod"])
if projDim is not None:
features = linear(features, dim, projDim)
features = relu(features)
dim = projDim
if pooling > 1:
poolingDims = [1, pooling, pooling, 1]
features = tf.nn.max_pool(features, ksize = poolingDims, strides = poolingDims,
padding = "SAME")
h /= pooling
w /= pooling
dim = h * w * dim
features = tf.reshape(features, (-1, dim))
if outDim is not None:
features = linear(features, dim, outDim)
dim = outDim
return features, dim
################################### multiplication ###################################
# specific dim / proj for x / y
'''
"Enhanced" hadamard product between x and y:
1. Supports optional projection of x, and y prior to multiplication.
2. Computes simple multiplication, or a parametrized one, using diagonal of complete matrix (bi-linear)
3. Optionally concatenate x or y or their projection to the multiplication result.
Support broadcasting
Args:
x: left-hand side argument
[batchSize, dim]
y: right-hand side argument
[batchSize, dim]
dim: input dimension of x and y
dropout: dropout value to apply on x and y
proj: if not None, project x and y:
dim: projection dimension
shared: use same projection for x and y
dropout: dropout to apply to x and y if projected
interMod: multiplication type:
"MUL": x * y
"DIAG": x * W * y for a learned diagonal parameter W
"BL": x' W y for a learned matrix W
concat: if not None, concatenate x or y or their projection.
mulBias: optional bias to stabilize multiplication (x * bias) (y * bias)
Returns the multiplication result
[batchSize, outDim] when outDim depends on the use of proj and cocnat arguments.
'''
# proj = {"dim": int, "shared": bool, "dropout": float} # "act": str, "actDropout": float
## interMod = ["direct", "scalarW", "bilinear"] # "additive"
# interMod = ["MUL", "DIAG", "BL", "ADD"]
# concat = {"x": bool, "y": bool, "proj": bool}
def mul(x, y, dim, dropout = 1.0, proj = None, interMod = "MUL", concat = None, mulBias = None,
extendY = True, name = "", reuse = None):
with tf.variable_scope("mul" + name, reuse = reuse):
origVals = {"x": x, "y": y, "dim": dim}
x = tf.nn.dropout(x, dropout)
y = tf.nn.dropout(y, dropout)
# projection
if proj is not None:
x = tf.nn.dropout(x, proj.get("dropout", 1.0))
y = tf.nn.dropout(y, proj.get("dropout", 1.0))
if proj["shared"]:
xName, xReuse = "proj", None
yName, yReuse = "proj", True
else:
xName, xReuse = "projX", None
yName, yReuse = "projY", None
x = linear(x, dim, proj["dim"], name = xName, reuse = xReuse)
y = linear(y, dim, proj["dim"], name = yName, reuse = yReuse)
dim = proj["dim"]
projVals = {"x": x, "y": y, "dim": dim}
proj["x"], proj["y"] = x, y
if extendY:
y = tf.expand_dims(y, axis = -2)
# broadcasting to have the same shape
y = tf.zeros_like(x) + y
# multiplication
if interMod == "MUL":
if mulBias is None:
mulBias = config.mulBias
output = (x + mulBias) * (y + mulBias)
elif interMod == "DIAG":
W = getWeight((dim, )) # change initialization?
b = getBias((dim, ))
activations = x * W * y + b
elif interMod == "BL":
W = getWeight((dim, dim))
b = getBias((dim, ))
output = multiply(x, W) * y + b
else: # "ADD"
output = tf.tanh(x + y)
# concatenation
if concat is not None:
concatVals = projVals if concat.get("proj", False) else origVals
if concat.get("x", False):
output = tf.concat([output, concatVals["x"]], axis = -1)
dim += concatVals["dim"]
if concat.get("y", False):
output = ops.concat(output, concatVals["y"], extendY = extendY)
dim += concatVals["dim"]
return output, dim
######################################## rnns ########################################
'''
Creates an RNN cell.
Args:
hdim: the hidden dimension of the RNN cell.
reuse: whether the cell should reuse parameters or create new ones.
cellType: the cell type
RNN, GRU, LSTM, MiGRU, MiLSTM, ProjLSTM
act: the cell activation
NON, TANH, SIGMOID, RELU, ELU
projDim: if ProjLSTM, the dimension for the states projection
Returns the cell.
'''
# tf.nn.rnn_cell.MultiRNNCell([cell(hDim, reuse = reuse) for _ in config.encNumLayers])
# note that config.enc params not general
def createCell(hDim, reuse, cellType = None, act = None, projDim = None):
if cellType is None:
cellType = config.encType
activation = activations.get(act, None)
if cellType == "ProjLSTM":
cell = tf.nn.rnn_cell.LSTMCell
if projDim is None:
projDim = config.cellDim
cell = cell(hDim, num_proj = projDim, reuse = reuse, activation = activation)
return cell
cells = {
"RNN": tf.nn.rnn_cell.BasicRNNCell,
"GRU": tf.nn.rnn_cell.GRUCell,
"LSTM": tf.nn.rnn_cell.BasicLSTMCell,
"MiGRU": MiGRUCell,
"MiLSTM": MiLSTMCell
}
cell = cells[cellType](hDim, reuse = reuse, activation = activation)
return cell
'''
Runs an forward RNN layer.
Args:
inSeq: the input sequence to run the RNN over.
[batchSize, sequenceLength, inDim]
seqL: the sequence matching lengths.
[batchSize, 1]
hDim: hidden dimension of the RNN.
cellType: the cell type
RNN, GRU, LSTM, MiGRU, MiLSTM, ProjLSTM
dropout: value for dropout over input sequence
varDp: if not None, state and input variational dropouts to apply.
dimension of input has to be supported (inputSize).
Returns the outputs sequence and final RNN state.
'''
# varDp = {"stateDp": float, "inputDp": float, "inputSize": int}
# proj = {"output": bool, "state": bool, "dim": int, "dropout": float, "act": str}
def fwRNNLayer(inSeq, seqL, hDim, cellType = None, dropout = 1.0, varDp = None,
name = "", reuse = None): # proj = None
with tf.variable_scope("rnnLayer" + name, reuse = reuse):
batchSize = tf.shape(inSeq)[0]
cell = createCell(hDim, reuse, cellType) # passing reuse isn't mandatory
if varDp is not None:
cell = tf.contrib.rnn.DropoutWrapper(cell,
state_keep_prob = varDp["stateDp"],
input_keep_prob = varDp["inputDp"],
variational_recurrent = True, input_size = varDp["inputSize"], dtype = tf.float32)
else:
inSeq = tf.nn.dropout(inSeq, dropout)
initialState = cell.zero_state(batchSize, tf.float32)
outSeq, lastState = tf.nn.dynamic_rnn(cell, inSeq,
sequence_length = seqL,
initial_state = initialState,
swap_memory = True)
if isinstance(lastState, tf.nn.rnn_cell.LSTMStateTuple):
lastState = lastState.h
# if proj is not None:
# if proj["output"]:
# outSeq = linear(outSeq, cell.output_size, proj["dim"], act = proj["act"],
# dropout = proj["dropout"], name = "projOutput")
# if proj["state"]:
# lastState = linear(lastState, cell.state_size, proj["dim"], act = proj["act"],
# dropout = proj["dropout"], name = "projState")
return outSeq, lastState
'''
Runs an bidirectional RNN layer.
Args:
inSeq: the input sequence to run the RNN over.
[batchSize, sequenceLength, inDim]
seqL: the sequence matching lengths.
[batchSize, 1]
hDim: hidden dimension of the RNN.
cellType: the cell type
RNN, GRU, LSTM, MiGRU, MiLSTM
dropout: value for dropout over input sequence
varDp: if not None, state and input variational dropouts to apply.
dimension of input has to be supported (inputSize).
Returns the outputs sequence and final RNN state.
'''
# varDp = {"stateDp": float, "inputDp": float, "inputSize": int}
# proj = {"output": bool, "state": bool, "dim": int, "dropout": float, "act": str}
def biRNNLayer(inSeq, seqL, hDim, cellType = None, dropout = 1.0, varDp = None,
name = "", reuse = None): # proj = None,
with tf.variable_scope("birnnLayer" + name, reuse = reuse):
batchSize = tf.shape(inSeq)[0]
with tf.variable_scope("fw"):
cellFw = createCell(hDim, reuse, cellType)
with tf.variable_scope("bw"):
cellBw = createCell(hDim, reuse, cellType)
if varDp is not None:
cellFw = tf.contrib.rnn.DropoutWrapper(cellFw,
state_keep_prob = varDp["stateDp"],
input_keep_prob = varDp["inputDp"],
variational_recurrent = True, input_size = varDp["inputSize"], dtype = tf.float32)
cellBw = tf.contrib.rnn.DropoutWrapper(cellBw,
state_keep_prob = varDp["stateDp"],
input_keep_prob = varDp["inputDp"],
variational_recurrent = True, input_size = varDp["inputSize"], dtype = tf.float32)
else:
inSeq = tf.nn.dropout(inSeq, dropout)
initialStateFw = cellFw.zero_state(batchSize, tf.float32)
initialStateBw = cellBw.zero_state(batchSize, tf.float32)
(outSeqFw, outSeqBw), (lastStateFw, lastStateBw) = tf.nn.bidirectional_dynamic_rnn(
cellFw, cellBw, inSeq,
sequence_length = seqL,
initial_state_fw = initialStateFw,
initial_state_bw = initialStateBw,
swap_memory = True)
if isinstance(lastStateFw, tf.nn.rnn_cell.LSTMStateTuple):
lastStateFw = lastStateFw.h # take c?
lastStateBw = lastStateBw.h
outSeq = tf.concat([outSeqFw, outSeqBw], axis = -1)
lastState = tf.concat([lastStateFw, lastStateBw], axis = -1)
# if proj is not None:
# if proj["output"]:
# outSeq = linear(outSeq, cellFw.output_size + cellFw.output_size,
# proj["dim"], act = proj["act"], dropout = proj["dropout"],
# name = "projOutput")
# if proj["state"]:
# lastState = linear(lastState, cellFw.state_size + cellFw.state_size,
# proj["dim"], act = proj["act"], dropout = proj["dropout"],
# name = "projState")
return outSeq, lastState
# int(hDim / 2) for biRNN?
'''
Runs an RNN layer by calling biRNN or fwRNN.
Args:
inSeq: the input sequence to run the RNN over.
[batchSize, sequenceLength, inDim]
seqL: the sequence matching lengths.
[batchSize, 1]
hDim: hidden dimension of the RNN.
bi: true to run bidirectional rnn.
cellType: the cell type
RNN, GRU, LSTM, MiGRU, MiLSTM
dropout: value for dropout over input sequence
varDp: if not None, state and input variational dropouts to apply.
dimension of input has to be supported (inputSize).
Returns the outputs sequence and final RNN state.
'''
# proj = {"output": bool, "state": bool, "dim": int, "dropout": float, "act": str}
# varDp = {"stateDp": float, "inputDp": float, "inputSize": int}
def RNNLayer(inSeq, seqL, hDim, bi = None, cellType = None, dropout = 1.0, varDp = None,
name = "", reuse = None): # proj = None
with tf.variable_scope("rnnLayer" + name, reuse = reuse):
if bi is None:
bi = config.encBi
rnn = biRNNLayer if bi else fwRNNLayer
if bi:
hDim = int(hDim / 2)
return rnn(inSeq, seqL, hDim, cellType = cellType, dropout = dropout, varDp = varDp) # , proj = proj
# tf counterpart?
# hDim = config.moduleDim
def multigridRNNLayer(featrues, h, w, dim, name = "", reuse = None):
with tf.variable_scope("multigridRNNLayer" + name, reuse = reuse):
featrues = linear(featrues, dim, dim / 2, name = "i")
output0 = gridRNNLayer(featrues, h, w, dim, right = True, down = True, name = "rd")
output1 = gridRNNLayer(featrues, h, w, dim, right = True, down = False, name = "r")
output2 = gridRNNLayer(featrues, h, w, dim, right = False, down = True, name = "d")
output3 = gridRNNLayer(featrues, h, w, dim, right = False, down = False, name = "NON")
output = tf.concat([output0, output1, output2, output3], axis = -1)
output = linear(output, 2 * dim, dim, name = "o")
return outputs
# h,w should be constants
def gridRNNLayer(features, h, w, dim, right, down, name = "", reuse = None):
with tf.variable_scope("gridRNNLayer" + name):
batchSize = tf.shape(features)[0]
cell = createCell(dim, reuse = reuse, cellType = config.stemGridRnnMod,
act = config.stemGridAct)
initialState = cell.zero_state(batchSize, tf.float32)
inputs = [tf.unstack(row, w, axis = 1) for row in tf.unstack(features, h, axis = 1)]
states = [[None for _ in range(w)] for _ in range(h)]
iAxis = range(h) if down else (range(h)[::-1])
jAxis = range(w) if right else (range(w)[::-1])
iPrev = -1 if down else 1
jPrev = -1 if right else 1
prevState = lambda i,j: states[i][j] if (i >= 0 and i < h and j >= 0 and j < w) else initialState
for i in iAxis:
for j in jAxis:
prevs = tf.concat((prevState(i + iPrev, j), prevState(i, j + jPrev)), axis = -1)
curr = inputs[i][j]
_, states[i][j] = cell(prevs, curr)
outputs = [tf.stack(row, axis = 1) for row in states]
outputs = tf.stack(outputs, axis = 1)
return outputs
# tf seq2seq?
# def projRNNLayer(inSeq, seqL, hDim, labels, labelsNum, labelsDim, labelsEmb, name = "", reuse = None):
# with tf.variable_scope("projRNNLayer" + name):
# batchSize = tf.shape(features)[0]
# cell = createCell(hDim, reuse = reuse)
# projCell = ProjWrapper(cell, labelsNum, labelsDim, labelsEmb, # config.wrdEmbDim
# feedPrev = True, dropout = 1.0, config,
# temperature = 1.0, clevr_sample = False, reuse)
# initialState = projCell.zero_state(batchSize, tf.float32)
# if config.soft:
# inSeq = inSeq
# # outputs, _ = tf.nn.static_rnn(projCell, inputs,
# # sequence_length = seqL,
# # initial_state = initialState)
# inSeq = tf.unstack(inSeq, axis = 1)
# state = initialState
# logitsList = []
# chosenList = []
# for inp in inSeq:
# (logits, chosen), state = projCell(inp, state)
# logitsList.append(logits)
# chosenList.append(chosen)
# projCell.reuse = True
# logitsOut = tf.stack(logitsList, axis = 1)
# chosenOut = tf.stack(chosenList, axis = 1)
# outputs = (logitsOut, chosenOut)
# else:
# labels = tf.to_float(labels)
# labels = tf.concat([tf.zeros((batchSize, 1)), labels], axis = 1)[:, :-1] # ,newaxis
# inSeq = tf.concat([inSeq, tf.expand_dims(labels, axis = -1)], axis = -1)
# outputs, _ = tf.nn.dynamic_rnn(projCell, inSeq,
# sequence_length = seqL,
# initial_state = initialState,
# swap_memory = True)
# return outputs #, labelsEmb
############################### variational dropout ###############################
'''
Generates a variational dropout mask for a given shape and a dropout
probability value.
'''
def generateVarDpMask(shape, keepProb):
randomTensor = tf.to_float(keepProb)
randomTensor += tf.random_uniform(shape, minval = 0, maxval = 1)
binaryTensor = tf.floor(randomTensor)
mask = tf.to_float(binaryTensor)
return mask
'''
Applies the a variational dropout over an input, given dropout mask
and a dropout probability value.
'''
def applyVarDpMask(inp, mask, keepProb):
ret = (tf.div(inp, tf.to_float(keepProb))) * mask
return ret
|