File size: 969 Bytes
03d46ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import cv2
import numpy as np
import torch
import torch.nn as nn
import torchvision.models as models
import einops

def predict(img):
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = models.resnet50()
    model.fc = nn.Linear(2048, 720)
    resume_path = 'full+++++.pth'
    model.load_state_dict(torch.load(resume_path))
    model.to(device)
    with torch.no_grad():
        model.eval()
        img = cv2.resize(img, (224, 224))/255.
        img = np.stack([einops.rearrange(img, 'h w c -> c h w')], 0)
        img = torch.Tensor(img).float().to(device)
        pred = model(img)  
        max_pred = torch.argsort(pred, dim=1, descending=True)
        max_h = (max_pred[0][0] // 60).item()
        max_m = (max_pred[0][0] % 60).item()
    return '{}:{}'.format(str(max_h), str(max_m).zfill(2))

inputs = gr.inputs.Image()

io = gr.Interface(
    fn=predict,
    inputs=inputs,
    outputs="text",
)

io.launch(share=True)