File size: 86,123 Bytes
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586e7fd
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dfe4fb
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294ea6c
4121bec
294ea6c
 
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586e7fd
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
586e7fd
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586e7fd
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
586e7fd
4121bec
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from typing import Dict, List, Optional, Tuple
from numpy.lib import pad
import torch
from torch import nn
from torch.nn import functional as F
from random import randint

from detectron2.config import configurable
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.structures import ImageList, Instances, Boxes
from detectron2.utils.events import get_event_storage
from detectron2.utils.logger import log_first_n

from ..backbone import Backbone, build_backbone, build_text_backbone
from ..postprocessing import detector_postprocess
from ..proposal_generator import build_proposal_generator
from ..roi_heads import build_roi_heads
from .build import META_ARCH_REGISTRY

from PIL import Image
import torchvision
from torchvision.transforms import Resize, CenterCrop
from detectron2.data.datasets.clip_prompt_utils import get_cls_names, pre_tokenize
import copy
from ..backbone.fpn import build_resnet_fpn_backbone
from ..roi_heads.fast_rcnn import fast_rcnn_inference
from detectron2.layers import ShapeSpec
from ..backbone.clip_backbone import build_clip_language_encoder
from detectron2.utils.comm import gather_tensors, MILCrossEntropy, SoftTargetCrossEntropy

__all__ = ["CLIPRCNN", "CLIPFastRCNN", "PretrainFastRCNN"]

@META_ARCH_REGISTRY.register()
class CLIPRCNN(nn.Module):
    """
    CLIP in R-CNN format. 
    It takes the image regions as inputs and classifies each image.
    It contains the following two components:
    1. Per-image feature extraction (visual encoder)
    2. Per-image prediction (text-based classifier)
    """
    @configurable
    def __init__(
        self,
        *,
        clip: Backbone,
        offline_backbone: Backbone,
        offline_proposal_generator: nn.Module,
        roi_heads: nn.Module,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        input_format: Optional[str] = None,
        vis_period: int = 0,
        clip_crop_region_type: str = 'GT',
        test_score_thresh: float = 0.0001,
        test_nms_thresh: float = 0.5,
        test_topk_per_image: float = 300,
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            proposal_generator: a module that generates proposals using backbone features
            roi_heads: a ROI head that performs per-region computation
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
            input_format: describe the meaning of channels of input. Needed by visualization
            vis_period: the period to run visualization. Set to 0 to disable.
        """
        super().__init__()
        self.clip_backbone = clip
        self.offline_backbone = offline_backbone
        self.offline_proposal_generator = offline_proposal_generator
        self.roi_heads = roi_heads

        self.input_format = input_format
        self.vis_period = vis_period
        if vis_period > 0:
            assert input_format is not None, "input_format is required for visualization!"

        self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
        assert (
            self.pixel_mean.shape == self.pixel_std.shape
        ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"
        # Detectron2 default pixel mean and std
        self.register_buffer("detectron_pixel_mean", torch.tensor([103.530, 116.280, 123.675]).view(-1, 1, 1), False)
        self.register_buffer("detectron_pixel_std", torch.tensor([1.0, 1.0, 1.0]).view(-1, 1, 1), False)

        # CLIP image loading
        if np.sum(pixel_mean) < 3.0: # converrt pixel value to range [0.0, 1.0] by dividing 255.0
            assert input_format == 'RGB'
            self.div_pixel = True
        else: # default setting
            self.div_pixel = False
        n_px = 224
        self.clip_resize = Resize(n_px, interpolation=Image.BICUBIC)  # shorter side becomes n_px
        self.clip_center_crop = CenterCrop(n_px)  # crop image into n_px * n_px at the center
        self.region_crop_scales = (1.0, 1.5) # (1.0, 2.0) # (1.0, 1.2) # (1.0,) #  

        # CLIP text prompt loading
        print("Working on pre_tokenize...")
        cls_names = get_cls_names(filter_novel=False, from_file='/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/trained_models/concept_pool/googlecc_nouns_filtered_100.txt') # filter_novel=True; coco='all', coco='base', coco='target'; from_file: a file path for concept pool
        # from_file='/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/trained_models/concept_pool/googlecc_nouns_triplet_parser_filtered_100.txt'
        print("Got {} class names: {}\n {} class names in total.".format(len(cls_names), cls_names, len(cls_names)))
        input_ids = pre_tokenize(cls_names)
        self.num_cls = input_ids.size(0)
        self.num_prompt = input_ids.size(1)
        self.input_ids_flat = input_ids.view(-1, input_ids.size(2))  # [#cls*#prompts, #context_length]
        self.clss_emb_all = None

        # CLIP crop image configs
        self.clip_crop_region_type = clip_crop_region_type
        self.test_score_thresh = test_score_thresh
        self.test_nms_thresh = test_nms_thresh
        self.test_topk_per_image = test_topk_per_image

    @classmethod
    def from_config(cls, cfg):
        if cfg.MODEL.CLIP.CROP_REGION_TYPE == "RPN":
            offline_backbone = build_resnet_fpn_backbone(cfg, ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN))) # build_backbone(cfg)
            offline_rpn = build_proposal_generator(cfg, offline_backbone.output_shape())
            roi_heads = None # build_roi_heads(cfg, backbone.output_shape()),
        elif cfg.MODEL.CLIP.CROP_REGION_TYPE == "GT":
            offline_backbone = None
            offline_rpn = None
            roi_heads = None
        clip = build_backbone(cfg)
        return {
            "clip": clip,
            "offline_backbone": offline_backbone,
            "offline_proposal_generator": offline_rpn, 
            "roi_heads": roi_heads, 
            "input_format": cfg.INPUT.FORMAT,
            "vis_period": cfg.VIS_PERIOD,
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
            "clip_crop_region_type" : cfg.MODEL.CLIP.CROP_REGION_TYPE,
            "test_score_thresh"     : cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST,
            "test_nms_thresh"       : cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST,
            "test_topk_per_image"   : cfg.TEST.DETECTIONS_PER_IMAGE,
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:

                * image: Tensor, image in (C, H, W) format.
                * instances (optional): groundtruth :class:`Instances`
                * proposals (optional): :class:`Instances`, precomputed proposals.

                Other information that's included in the original dicts, such as:

                * "height", "width" (int): the output resolution of the model, used in inference.
                  See :meth:`postprocess` for details.

        Returns:
            list[dict]:
                Each dict is the output for one input image.
                The dict contains one key "instances" whose value is a :class:`Instances`.
                The :class:`Instances` object has the following keys:
                "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints"
        """
        if not self.training:
            return self.inference(batched_inputs)
        # No training mode for this arch

    def inference(
        self,
        batched_inputs: List[Dict[str, torch.Tensor]],
        detected_instances: Optional[List[Instances]] = None,
        do_postprocess: bool = True,
    ):
        """
        Run inference on the given inputs.

        Args:
            batched_inputs (list[dict]): same as in :meth:`forward`
            detected_instances (None or list[Instances]): if not None, it
                contains an `Instances` object per image. The `Instances`
                object contains "pred_boxes" and "pred_classes" which are
                known boxes in the image.
                The inference will then skip the detection of bounding boxes,
                and only predict other per-ROI outputs.
            do_postprocess (bool): whether to apply post-processing on the outputs.

        Returns:
            When do_postprocess=True, same as in :meth:`forward`.
            Otherwise, a list[Instances] containing raw network outputs.
        """
        assert not self.training

        # get the label prompt, and use CLIP.encode_text() to compute text emb only once
        if self.clss_emb_all is None:  # compute only once
            num_instances = self.input_ids_flat.size(0)
            per_split = 1000
            num_splits = num_instances // per_split
            input_ids_flat = self.input_ids_flat.to(self.device)
            #self.clss_emb_all = torch.ones((1203, 512)).to(self.device)
            clss_emb_all = []
            for i in range(num_splits+1):
                if i < num_splits:
                    clss_emb_i = self.clip_backbone.encode_text(input_ids_flat[per_split*i:per_split*(i+1)]) # per_split x D
                else:
                    clss_emb_i = self.clip_backbone.encode_text(input_ids_flat[per_split*i:]) # per_split x D
                # clss_emb_i = clip_model.encode_label(torch.arange(0, 1000).view(-1, 1).long().to(device)) # per_split x D
                clss_emb_all.append(clss_emb_i)
            self.clss_emb_all = torch.cat(clss_emb_all, 0).view(self.num_cls, self.num_prompt, -1)  # [#cls, #prompts, D]
            self.clss_emb_all = self.clss_emb_all.mean(1)  # ensemble different prompts for each class
            # torch.save(self.clss_emb_all.cpu(), "/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/trained_models/lvis_cls_emb/coco_17_target_cls_emb_notnorm_rn50x4.pth")
            self.clss_emb_all = F.normalize(self.clss_emb_all, p=2.0, dim=1)  # [#cls, emb_dim]
        else:
            assert self.clss_emb_all.device == self.device

        # get the region proposals, from the backbone & RPN of standard Mask-RCNN, trained on base classes
        if self.clip_crop_region_type == "GT":
            proposals = None
        elif self.clip_crop_region_type == "RPN":
            images = self.preprocess_image(batched_inputs)
            features = self.offline_backbone(images.tensor)
            if detected_instances is None:
                if self.offline_proposal_generator is not None:
                    proposals, _ = self.offline_proposal_generator(images, features, None)   

        # crop image regions, and use CLIP.encode_image() to get the visual feature
        images, bbs, num_bbs = self.preprocess_image_crop(batched_inputs, rpn_proposals=proposals)
        img_emb = self.clip_backbone.encode_image(images.tensor)
        img_emb = img_emb.view(-1, len(self.region_crop_scales), img_emb.size(1))
        img_emb = torch.sum(img_emb, dim=1)  # ensemble different scales for each region
        img_emb = F.normalize(img_emb, p=2.0, dim=1)

        # cosine similarity as logits
        all_scores = torch.mm(img_emb, self.clss_emb_all.T)
        all_scores = F.softmax(all_scores, dim=-1)
        scores, pred_cls = torch.max(all_scores, dim=-1)  # Note: [0, #cls-1] representing the categories. The value #cls represents "background".

        # convert model outputs into regular output result format
        scores_per_img = scores.split(num_bbs)
        pred_cls_per_img = pred_cls.split(num_bbs)
        all_scores_per_img = all_scores.split(num_bbs)

        # per-class NMS
        if self.clip_crop_region_type == "GT":
            image_shapes = [x['instances']._image_size for x in batched_inputs]
            bbs = [bb.to(self.device) for bb in bbs]
            pred_instances, _ = fast_rcnn_inference(bbs, all_scores_per_img, image_shapes, \
                                        self.test_score_thresh, self.test_nms_thresh, self.test_topk_per_image)
            results = pred_instances

            # results = []
            # for r_i, (b_input, bb, sc, prd) in enumerate(zip(batched_inputs, bbs, scores_per_img, pred_cls_per_img)): 
            #     this_result = copy.deepcopy(b_input["instances"])  # Instance
            #     if self.clip_crop_region_type == "GT":
            #         result_boxes = this_result._fields['gt_boxes'].to(self.device)
            #     elif self.clip_crop_region_type == "RPN":  # directly use RPN boxes without per-class NMS
            #         result_boxes = bb # result_boxes = Boxes(bb)
            #     this_result._fields = {'pred_boxes': result_boxes, 'scores': sc, 'pred_classes': prd}
            #     results.append(this_result)
            
            # sanity check: GT boxes + GT classes
            # results = []
            # for b_input in batched_inputs: 
            #     this_result = copy.deepcopy(b_input["instances"])  # Instance
            #     gt_boxes = this_result._fields['gt_boxes'].to(self.device)
            #     gt_cls =  this_result._fields['gt_classes'].to(self.device)
            #     this_result._fields = {'pred_boxes': gt_boxes, 'scores': torch.ones(gt_cls.size(0)).to(self.device), 'pred_classes': gt_cls}
            #     #this_result._fields = {'pred_boxes': gt_boxes, 'scores': sc, 'pred_classes': prd}
            #     results.append(this_result)
        elif self.clip_crop_region_type == "RPN":
            image_shapes = [x.image_size for x in proposals]
            pred_instances, _ = fast_rcnn_inference(bbs, all_scores_per_img, image_shapes, \
                                        self.test_score_thresh, self.test_nms_thresh, self.test_topk_per_image)
            results = pred_instances

        if do_postprocess:
            assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
            return CLIPRCNN._postprocess(results, batched_inputs)
        else:
            return results

    def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Normalize, pad and batch the input images. Use detectron2 default processing (pixel mean & std).
        Note: Due to FPN size_divisibility, images are padded by right/bottom border. So FPN is consistent with C4 and GT boxes.
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.detectron_pixel_mean) / self.detectron_pixel_std for x in images]
        images = ImageList.from_tensors(images, self.offline_backbone.size_divisibility)
        return images

    def preprocess_image_crop(self, batched_inputs: List[Dict[str, torch.Tensor]], rpn_proposals=None, max_num_rpn=1000):
        """
        Crop image regions based on GT or RPN boxes with different scales.
        Then apply CLIP tranformation: resizing / cropping the regions into square shape (224 * 224).
        Followed by the default preprocessing in Detectron2 as follows.
        Normalize, pad and batch the input images.
        """
        def clip_crop_region(image, box, scales=(1.0, 1.5)):
            """Crop image regions based on given boxes. Return different scales of region crops. (3 hrs)"""
            img_h, img_w = image.size(1), image.size(2)
            x1, y1, x2, y2 = list(box)
            assert x1 < x2 and y1 < y2 and x2 < (img_w + 1) and y2 < (img_h + 1)
            x_center = (x1 + x2) / 2.0
            y_center = (y1 + y2) / 2.0
            half_w = x_center - x1
            half_h = y_center - y1
            regions = []
            for scale in scales: # get region coordinates
                r_y1 = int(max(0, (y_center - half_h * scale).item()))
                r_y2 = int(min(img_h, (y_center + half_h * scale).item()))
                r_x1 = int(max(0, (x_center - half_w * scale).item()))
                r_x2 = int(min(img_w, (x_center + half_w * scale).item()))
                # sanity check
                if r_y2 - r_y1 <= 1:
                    r_y2 = int(min(img_h, r_y2 + 2))
                if r_y2 - r_y1 <= 1:
                    r_y1 = int(max(0, r_y1 - 2))
                if r_x2 - r_x1 <= 1:
                    r_x2 = int(min(img_w, r_x2 + 2))
                if r_x2 - r_x1 <= 1:
                    r_x1 = int(max(0, r_x1 - 2))
                regions.append(image[:, r_y1:r_y2, r_x1:r_x2])
            return regions
        
        def clip_square_crop(image, box, scales=(1.0,)):
            """Crop image regions based on given boxes. Ensure square region as much as possible. (1.75 hrs)"""
            img_h, img_w = image.size(1), image.size(2)
            x1, y1, x2, y2 = list(box)
            assert x1 < x2 and y1 < y2 and x2 < (img_w + 1) and y2 < (img_h + 1)
            x_center = (x1 + x2) / 2.0
            y_center = (y1 + y2) / 2.0
            half_w = x_center - x1
            half_h = y_center - y1
            square_side = max(half_w, half_h)
            half_w = square_side
            half_h = square_side
            regions = []
            for scale in scales: # get region coordinates
                if square_side * square_side < 2500:  # crop larger context area for tiny objects
                    scale = 1.5 if scale == 1.0 else 4.0
                # elif square_side * square_side > 90000:  # crop exact area for large objects
                #     scale = 1.0 if scale == 1.0 else 1.1
                r_y1 = int(max(0, (y_center - half_h * scale).item()))
                r_y2 = int(min(img_h, (y_center + half_h * scale).item()))
                r_x1 = int(max(0, (x_center - half_w * scale).item()))
                r_x2 = int(min(img_w, (x_center + half_w * scale).item()))
                # sanity check
                if r_y2 - r_y1 <= 1:
                    r_y2 = int(min(img_h, r_y2 + 2))
                if r_y2 - r_y1 <= 1:
                    r_y1 = int(max(0, r_y1 - 2))
                if r_x2 - r_x1 <= 1:
                    r_x2 = int(min(img_w, r_x2 + 2))
                if r_x2 - r_x1 <= 1:
                    r_x1 = int(max(0, r_x1 - 2))
                #regions.append(image[:, r_y1:r_y2, r_x1:r_x2])
                # if the cropped image isn't square (due to image boundaries), pad the cropped region
                crop_image = image[:, r_y1:r_y2, r_x1:r_x2]
                r_h, r_w = crop_image.size(1), crop_image.size(2)
                pad_image = torch.zeros((3, int(2 * half_h.item() * scale) + 4 , int(2 * half_w.item() * scale) + 4)) #.fill_(torch.mean(crop_image.float()))
                p_h, p_w = pad_image.size(1), pad_image.size(2)
                pad_image[:, int(((p_h - r_h) / 2)):int(((p_h - r_h) / 2 + r_h)), int(((p_w - r_w) / 2)):int(((p_w - r_w) / 2 + r_w))] = crop_image
                regions.append(pad_image.type(torch.uint8))
            return regions
        
        def vis_crop(f_n, images):
            """visualize the crop regions to diagnose the accuracy."""
            if f_n not in ['datasets/coco/train2017/000000008691.jpg']:
                for p_i, pad_image in enumerate(images):
                    to_save = pad_image.permute(1, 2, 0).numpy()
                    to_save = Image.fromarray(np.array(to_save, np.uint8))
                    #to_save.save("output/regions/" + f_n.split("/")[-1].split(".")[0] + "-{}.png".format(p_i))
                    pass

        # crop image region
        images = []
        bbs = []
        num_bbs = []
        for img_i, b_input in enumerate(batched_inputs): 
            this_img = b_input["image"]
            if self.clip_crop_region_type == "GT":
                this_boxes = b_input["instances"]._fields['gt_boxes'].tensor  # variant #bbox (eg, max 759), might lead to OOM
            elif self.clip_crop_region_type == "RPN":
                this_boxes = rpn_proposals[img_i]._fields['proposal_boxes'].tensor[:max_num_rpn]

            bbs.append(this_boxes)
            num_bbs.append(this_boxes.size(0))
            for this_box in this_boxes:
                #images.extend(clip_crop_region(this_img, this_box, self.region_crop_scales))
                images.extend(clip_square_crop(this_img, this_box, self.region_crop_scales))
        #vis_crop(batched_inputs[0]['file_name'], images)
        images = [self.clip_resize(x) for x in images]
        images = [self.clip_center_crop(x) for x in images]
        images = [x.to(self.device) for x in images]
        if self.div_pixel:
            images = [((x / 255.0) - self.pixel_mean) / self.pixel_std for x in images]
        else:
            images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.clip_backbone.size_divisibility) # batch images into single tensor by padding to same size
        return images, bbs, num_bbs

    @staticmethod
    def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Rescale the output instances to the target size.
        """
        # note: private function; subject to changes
        processed_results = []
        for results_per_image, input_per_image in zip(
            instances, batched_inputs):
            height = input_per_image["height"]  # original image size, before resizing
            width = input_per_image["width"]  # original image size, before resizing
            r = detector_postprocess(results_per_image, height, width)
            processed_results.append({"instances": r})
        return processed_results

    def inference_on_cifar(self, pseudo_input):
        """ Evaluate recoginition accuracy on CIFAR-10 for sanity check """
        # get the label prompt, and use CLIP.encode_text() to compute text emb only once
        cifar_cls_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
        input_ids = pre_tokenize(cifar_cls_names)
        num_cls = input_ids.size(0)
        input_ids_flat = input_ids.view(-1, input_ids.size(2))
        input_ids_flat = input_ids_flat.to(self.device)
        
        clss_emb_all = self.clip_backbone.encode_text(input_ids_flat)
        clss_emb_all = clss_emb_all.view(num_cls, self.num_prompt, -1)
        clss_emb_all = clss_emb_all.mean(1)
        clss_emb_all = F.normalize(clss_emb_all, p=2.0, dim=1)  # [#cls, emb_dim]
        
        # dataset loads images and labels
        testset = torchvision.datasets.CIFAR10(root='./datasets', train=False,
                                            download=False, transform=None)
        # testloader = torch.utils.data.DataLoader(testset, batch_size=4,
        #                                         shuffle=False, num_workers=0)
        
        # inference on each image and calculate accuracy
        correct = 0
        wrong = 0
        for idx, inputs in enumerate(testset):
            if idx % 1000 == 0:
                print(idx)
            # preprocess images
            raw_image, label = inputs
            image = np.array(raw_image)  # [h, w, 3]
            image = torch.from_numpy(image)
            image = image.permute(2, 0, 1) # [3, h, w]
            images = [image]
            images = [self.clip_resize(x) for x in images]
            images = [self.clip_center_crop(x) for x in images]
            images = [x.to(self.device) for x in images]
            if self.div_pixel:
                images = [((x / 255.0) - self.pixel_mean) / self.pixel_std for x in images]
            else:
                images = [(x - self.pixel_mean) / self.pixel_std for x in images]
            
            # get image embedding
            img_emb = self.clip_backbone.encode_image(images[0].unsqueeze(0))
            img_emb = img_emb.view(-1, 1, img_emb.size(1))
            img_emb = torch.sum(img_emb, dim=1)  # ensemble different scales for each region
            img_emb = F.normalize(img_emb, p=2.0, dim=1)

            # cosine similarity as logits
            all_scores = torch.mm(img_emb, clss_emb_all.T)
            scores, pred_cls = torch.max(all_scores, dim=1)  # Note: [0, #cls-1] representing the categories. The value #cls represents "background".
            pred_cls = pred_cls.item()
            if pred_cls == label:
                correct += 1
            else:
                wrong += 1
        
        print("\n\nGot correct {} and wrong {}. Accuracy is {} / {} = {}\n\n".format(correct,wrong,correct,correct+wrong,correct/(correct+wrong)))
        return

@META_ARCH_REGISTRY.register()
class CLIPFastRCNN(nn.Module):
    """
    CLIP in Fast R-CNN format, where the cropping is conducted on feature maps instead of raw images.
    It contains the following two components: 
    1. Localization modules: pretrained backbone+RPN or equivalent modules and is able to output object proposals
    2. Recognition branch: initialized by CLIP and is able to recognize zero-shot regions
    """
    @configurable
    def __init__(
        self,
        *,
        offline_backbone: Backbone,
        backbone: Backbone,
        backbone_type: str = "resnet", 
        text_backbone: Backbone, 
        offline_proposal_generator: nn.Module,
        roi_heads: nn.Module,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        input_format: Optional[str] = None,
        vis_period: int = 0,
        clip_crop_region_type: str = 'GT',
        use_clip_c4: False,
        use_clip_attpool: False,
        offline_input_format: Optional[str] = None,
        offline_pixel_mean: Tuple[float],
        offline_pixel_std: Tuple[float],
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            proposal_generator: a module that generates proposals using backbone features
            roi_heads: a ROI head that performs per-region computation
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
            input_format: describe the meaning of channels of input. Needed by visualization
            vis_period: the period to run visualization. Set to 0 to disable.
        """
        super().__init__()
        self.offline_backbone = offline_backbone
        self.backbone = backbone
        self.backbone_type = backbone_type
        self.offline_proposal_generator = offline_proposal_generator
        self.roi_heads = roi_heads
        self.lang_encoder = text_backbone

        self.input_format = input_format
        self.vis_period = vis_period
        if vis_period > 0:
            assert input_format is not None, "input_format is required for visualization!"

        self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
        assert (
            self.pixel_mean.shape == self.pixel_std.shape
        ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"
        if np.sum(pixel_mean) < 3.0: # converrt pixel value to range [0.0, 1.0] by dividing 255.0
            assert input_format == 'RGB'
            self.div_pixel = True
        else: # default setting
            self.div_pixel = False

        # input format, pixel mean and std for offline modules
        if offline_input_format and offline_pixel_mean and offline_pixel_std:
            self.offline_input_format = offline_input_format
            self.register_buffer("offline_pixel_mean", torch.tensor(offline_pixel_mean).view(-1, 1, 1), False)
            self.register_buffer("offline_pixel_std", torch.tensor(offline_pixel_std).view(-1, 1, 1), False)
            if np.sum(offline_pixel_mean) < 3.0: # converrt pixel value to range [0.0, 1.0] by dividing 255.0
                assert offline_input_format == 'RGB'
                self.offline_div_pixel = True
            else: # default setting
                self.offline_div_pixel = False
        
        self.clip_crop_region_type = clip_crop_region_type
        self.use_clip_c4 = use_clip_c4 # if True, use C4 mode where roi_head uses the last resnet layer from backbone 
        self.use_clip_attpool = use_clip_attpool # if True (C4+text_emb_as_classifier), use att_pool to replace default mean pool


    @classmethod
    def from_config(cls, cfg):
        if cfg.MODEL.CLIP.CROP_REGION_TYPE == "RPN": # create isolated backbone & RPN
            # create offline cfg for the pretrained backbone & RPN
            from detectron2.config import get_cfg
            offline_cfg = get_cfg()
            offline_cfg.merge_from_file(cfg.MODEL.CLIP.OFFLINE_RPN_CONFIG)
            if cfg.MODEL.CLIP.OFFLINE_RPN_LSJ_PRETRAINED: # large-scale jittering (LSJ) pretrained RPN
                offline_cfg.MODEL.BACKBONE.FREEZE_AT = 0 # make all fronzon layers to "SyncBN"
                offline_cfg.MODEL.RESNETS.NORM = "SyncBN" # 5 resnet layers
                offline_cfg.MODEL.FPN.NORM = "SyncBN" # fpn layers
                offline_cfg.MODEL.RPN.CONV_DIMS = [-1, -1] # rpn layers
            if cfg.MODEL.CLIP.OFFLINE_RPN_NMS_THRESH:
                offline_cfg.MODEL.RPN.NMS_THRESH = cfg.MODEL.CLIP.OFFLINE_RPN_NMS_THRESH  # 0.9
                offline_cfg.MODEL.RPN.POST_NMS_TOPK_TEST = cfg.MODEL.RPN.POST_NMS_TOPK_TEST # 0.9

            # create offline backbone and RPN
            offline_backbone = build_backbone(offline_cfg) # build_resnet_fpn_backbone(cfg, ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN)))
            offline_rpn = build_proposal_generator(offline_cfg, offline_backbone.output_shape())
            # convert to evaluation mode
            for p in offline_backbone.parameters(): p.requires_grad = False
            for p in offline_rpn.parameters(): p.requires_grad = False
            offline_backbone.eval()
            offline_rpn.eval()
        elif cfg.MODEL.CLIP.CROP_REGION_TYPE == "GT":
            offline_backbone = None
            offline_rpn = None
            offline_cfg = None
        
        backbone = build_backbone(cfg)
        text_backbone = build_clip_language_encoder(cfg)

        backbone_type = "swin" if "swin" in cfg.MODEL.BACKBONE.NAME else "resnet"

        if backbone_type == "swin": 
            roi_heads = build_roi_heads(cfg, backbone.image_encoder.output_shape())
        else:        
            roi_heads = build_roi_heads(cfg, backbone.output_shape())
            
        return {
            "offline_backbone": offline_backbone,
            "offline_proposal_generator": offline_rpn, 
            "backbone": backbone,
            "backbone_type": backbone_type, 
            "text_backbone": text_backbone, 
            "roi_heads": roi_heads, 
            "input_format": cfg.INPUT.FORMAT,
            "vis_period": cfg.VIS_PERIOD,
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
            "clip_crop_region_type" : cfg.MODEL.CLIP.CROP_REGION_TYPE,
            "use_clip_c4": 'FPN' not in cfg.MODEL.BACKBONE.NAME,
            "use_clip_attpool": cfg.MODEL.ROI_HEADS.NAME in ['CLIPRes5ROIHeads', 'CLIPStandardROIHeads'] and cfg.MODEL.CLIP.USE_TEXT_EMB_CLASSIFIER,
            "offline_input_format": offline_cfg.INPUT.FORMAT if offline_cfg else None,
            "offline_pixel_mean": offline_cfg.MODEL.PIXEL_MEAN if offline_cfg else None,
            "offline_pixel_std": offline_cfg.MODEL.PIXEL_STD if offline_cfg else None,
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, queries, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:

                * image: Tensor, image in (C, H, W) format.
                * instances (optional): groundtruth :class:`Instances`
                * proposals (optional): :class:`Instances`, precomputed proposals.

                Other information that's included in the original dicts, such as:

                * "height", "width" (int): the output resolution of the model, used in inference.
                  See :meth:`postprocess` for details.

        Returns:
            list[dict]:
                Each dict is the output for one input image.
                The dict contains one key "instances" whose value is a :class:`Instances`.
                The :class:`Instances` object has the following keys:
                "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints"
        """
        if not self.training:
            return self.inference(queries, batched_inputs)
        if "instances" in batched_inputs[0]:
            gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
        else:
            gt_instances = None
        
        # localization branch: offline modules to get the region proposals
        with torch.no_grad():  
            if self.clip_crop_region_type == "GT":  # from ground-truth
                proposals = []
                for r_i, b_input in enumerate(batched_inputs): 
                    this_gt = copy.deepcopy(b_input["instances"])  # Instance
                    gt_boxes = this_gt._fields['gt_boxes'].to(self.device)
                    this_gt._fields = {'proposal_boxes': gt_boxes, 'objectness_logits': torch.ones(gt_boxes.tensor.size(0)).to(self.device)}
                    proposals.append(this_gt)                
            elif self.clip_crop_region_type == "RPN": # from the backbone & RPN of standard Mask-RCNN, trained on base classes
                if self.offline_backbone.training or self.offline_proposal_generator.training:  #  was set to True in training script
                    self.offline_backbone.eval() 
                    self.offline_proposal_generator.eval()  
                images = self.offline_preprocess_image(batched_inputs)
                features = self.offline_backbone(images.tensor)
                if self.offline_proposal_generator is not None:
                    proposals, _ = self.offline_proposal_generator(images, features, None)     

        # recognition branch: get 2D feature maps using the backbone of recognition branch
        images = self.preprocess_image(batched_inputs)
        features = self.backbone(images.tensor)

        if self.backbone_type == "resnet":
            head = self.backbone.layer4
        elif self.backbone_type == "swin":
            head = self.backbone.layers[-1]

        # Given the proposals, crop region features from 2D image features and classify the regions
        if self.use_clip_c4: # use C4 + resnet weights from CLIP
            if self.use_clip_attpool: # use att_pool from CLIP to match dimension
                _, detector_losses = self.roi_heads(images, features, proposals, gt_instances, res5=head, attnpool=self.backbone.attnpool)
            else: # use default mean pool
                _, detector_losses = self.roi_heads(images, features, proposals, gt_instances, res5=head)
        else:  # default setting
            if self.use_clip_attpool: # use att_pool from CLIP to match dimension
                _, detector_losses = self.roi_heads(images, features, proposals, gt_instances, attnpool=self.backbone.bottom_up.attnpool)
            else: # use default mean pool
                _, detector_losses = self.roi_heads(images, features, proposals, gt_instances)
        if self.vis_period > 0:
            storage = get_event_storage()
            if storage.iter % self.vis_period == 0:
                self.visualize_training(batched_inputs, proposals)
        #visualize_proposals(batched_inputs, proposals, self.input_format)

        losses = {}
        losses.update(detector_losses)
        return losses

    def inference(
        self,
        queries, 
        batched_inputs: List[Dict[str, torch.Tensor]],
        detected_instances: Optional[List[Instances]] = None,
        do_postprocess: bool = True,
    ):
        """
        Run inference on the given inputs.

        Args:
            batched_inputs (list[dict]): same as in :meth:`forward`
            detected_instances (None or list[Instances]): if not None, it
                contains an `Instances` object per image. The `Instances`
                object contains "pred_boxes" and "pred_classes" which are
                known boxes in the image.
                The inference will then skip the detection of bounding boxes,
                and only predict other per-ROI outputs.
            do_postprocess (bool): whether to apply post-processing on the outputs.

        Returns:
            When do_postprocess=True, same as in :meth:`forward`.
            Otherwise, a list[Instances] containing raw network outputs.
        """
        assert not self.training
        
        # localization branch: offline modules to get the region proposals
        if self.clip_crop_region_type == "GT":  # from ground-truth
            proposals = []
            for r_i, b_input in enumerate(batched_inputs): 
                this_gt = copy.deepcopy(b_input["instances"])  # Instance
                gt_boxes = this_gt._fields['gt_boxes'].to(self.device)
                this_gt._fields = {'proposal_boxes': gt_boxes} #, 'objectness_logits': None}
                proposals.append(this_gt)                
        elif self.clip_crop_region_type == "RPN": # from the backbone & RPN of standard Mask-RCNN, trained on base classes
            images = self.offline_preprocess_image(batched_inputs)
            features = self.offline_backbone(images.tensor)
            if detected_instances is None:
                if self.offline_proposal_generator is not None:
                    proposals, _ = self.offline_proposal_generator(images, features, None)     
    
        # recognition branch: get 2D feature maps using the backbone of recognition branch
        print(batched_inputs[0]['image'][0][:10, :10])
        print(batched_inputs[0]['image'].shape)
        images = self.preprocess_image(batched_inputs)
        
        if self.backbone_type == "swin":
            features = self.backbone.encode_image(images.tensor)
            text_features = self.backbone.encode_text(queries)
        else:
            features = self.backbone(images.tensor)
            token_embeddings = pre_tokenize([queries]).to(images.tensor.device)[0]
            text_features = self.lang_encoder.encode_text(token_embeddings)
            text_features = text_features.mean(0, keepdim=True)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)  

        if self.backbone_type == "resnet":
            head = self.backbone.layer4
            downsampler = None
            norm = None
            vision_projection = None
        elif self.backbone_type == "swin":
            downsampler = self.backbone.image_encoder.layers[-2].downsample    
            head = self.backbone.image_encoder.layers[-1]
            norm = self.backbone.image_encoder.norm
            vision_projection = self.backbone.image_projection
            
        # Given the proposals, crop region features from 2D image features and classify the regions
        if self.use_clip_c4: # use C4 + resnet weights from CLIP
            if self.use_clip_attpool: # use att_pool from CLIP to match dimension
                results, _ = self.roi_heads(images, features, proposals, text_features, None, 
                    res5=head, ds=downsampler, norm=norm, vision_projection=vision_projection, attnpool=self.backbone.attnpool)
            else: # use default mean pool
                results, _ = self.roi_heads(images, features, proposals, text_features, None, 
                    res5=head, ds=downsampler, norm=norm, vision_projection=vision_projection)
        else:  # default setting
            if self.use_clip_attpool: # use att_pool from CLIP to match dimension
                results, _  = self.roi_heads(images, features, proposals, text_features, None, 
                    attnpool=self.backbone.bottom_up.attnpool)
            else:
                results, _  = self.roi_heads(images, features, proposals, text_features, None)
        
        visualize_proposals(batched_inputs, proposals, self.input_format)
        vis = visualize_results(batched_inputs, results, self.input_format)
        return vis

    def offline_preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Normalize, pad and batch the input images. Use detectron2 default processing (pixel mean & std).
        Note: Due to FPN size_divisibility, images are padded by right/bottom border. So FPN is consistent with C4 and GT boxes.
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        if (self.input_format == 'RGB' and self.offline_input_format == 'BGR') or \
            (self.input_format == 'BGR' and self.offline_input_format == 'RGB'): # the input image follows the main config format ('RGB' or 'BGR')
            images = [x[[2,1,0],:,:] for x in images]
        if self.offline_div_pixel:
            images = [((x / 255.0) - self.offline_pixel_mean) / self.offline_pixel_std for x in images]
        else:
            images = [(x - self.offline_pixel_mean) / self.offline_pixel_std for x in images]
        images = ImageList.from_tensors(images, self.offline_backbone.size_divisibility)
        return images

    def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Normalize, pad and batch the input images. Use CLIP default processing (pixel mean & std).
        Note: Due to FPN size_divisibility, images are padded by right/bottom border. So FPN is consistent with C4 and GT boxes.
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        if self.div_pixel:
            images = [((x / 255.0) - self.pixel_mean) / self.pixel_std for x in images]
        else:
            images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.backbone.size_divisibility)
        return images

    @staticmethod
    def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Rescale the output instances to the target size.
        """
        # note: private function; subject to changes
        processed_results = []
        for results_per_image, input_per_image in zip(
            instances, batched_inputs):
            height = input_per_image["height"]  # original image size, before resizing
            width = input_per_image["width"]  # original image size, before resizing
            r = detector_postprocess(results_per_image, height, width)
            processed_results.append({"instances": r})
        return processed_results

@META_ARCH_REGISTRY.register()
class PretrainFastRCNN(nn.Module):
    """
    Open-vocabulary region representation via vision-language pretraining from image-text pairs
    1. image-text level matching: weakly supervised grounding task with contrastive learning based on region-token representation
    2. region-token level matching: use pseudo text to train model, provided by teacher model
    """
    @configurable
    def __init__(
        self,
        *,
        offline_backbone: Backbone,
        backbone: Backbone,
        offline_proposal_generator: nn.Module,
        roi_heads: nn.Module,
        teacher_backbone: nn.Module,
        teacher_roi_heads: nn.Module,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        input_format: Optional[str] = None,
        vis_period: int = 0,
        clip_crop_region_type: str = 'GT',
        use_clip_c4: False,
        use_clip_attpool: False,
        offline_input_format: Optional[str] = None,
        offline_pixel_mean: Tuple[float],
        offline_pixel_std: Tuple[float],
        language_encoder: nn.Module,
        matching_temp: None,
        num_regions_per_img: int = 0,
        img_txt_level: None,
        gather_gpus: False,
        grid_regions: False,
        concept_emb: None,
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            proposal_generator: a module that generates proposals using backbone features
            roi_heads: a ROI head that performs per-region computation
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
            input_format: describe the meaning of channels of input. Needed by visualization
            vis_period: the period to run visualization. Set to 0 to disable.
        """
        super().__init__()
        self.offline_backbone = offline_backbone
        self.backbone = backbone
        self.offline_proposal_generator = offline_proposal_generator
        self.roi_heads = roi_heads

        self.input_format = input_format
        self.vis_period = vis_period
        if vis_period > 0:
            assert input_format is not None, "input_format is required for visualization!"

        self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
        assert (
            self.pixel_mean.shape == self.pixel_std.shape
        ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"
        if np.sum(pixel_mean) < 3.0: # converrt pixel value to range [0.0, 1.0] by dividing 255.0
            assert input_format == 'RGB'
            self.div_pixel = True
        else: # default setting
            self.div_pixel = False

        # input format, pixel mean and std for offline modules
        if offline_input_format and offline_pixel_mean and offline_pixel_std:
            self.offline_input_format = offline_input_format
            self.register_buffer("offline_pixel_mean", torch.tensor(offline_pixel_mean).view(-1, 1, 1), False)
            self.register_buffer("offline_pixel_std", torch.tensor(offline_pixel_std).view(-1, 1, 1), False)
            if np.sum(offline_pixel_mean) < 3.0: # converrt pixel value to range [0.0, 1.0] by dividing 255.0
                assert offline_input_format == 'RGB'
                self.offline_div_pixel = True
            else: # default setting
                self.offline_div_pixel = False
        
        self.clip_crop_region_type = clip_crop_region_type
        self.use_clip_c4 = use_clip_c4 # if True, use C4 mode where roi_head uses the last resnet layer from backbone 
        self.use_clip_attpool = use_clip_attpool # if True (C4+text_emb_as_classifier), use att_pool to replace default mean pool
        
        # image-text level pretraining
        self.img_txt_level = img_txt_level[0]
        self.only_eot = img_txt_level[1]
        if self.img_txt_level:
            self.lang_encoder = language_encoder
            for p in self.lang_encoder.parameters():  # freeze language encoder
                p.requires_grad = False
        if matching_temp > 0.0: # fixed temp
            self.matching_temp = matching_temp
        else: # leanable temp
            self.matching_temp = nn.Parameter(torch.ones([]) * 4.6052) # nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
        self.context_length = 77 # defined in clip_img_txt_pair_tsv class
        self.num_regions_per_img = num_regions_per_img
        self.gather_gpus = gather_gpus
        self.grid_regions = grid_regions

        # region-token level pretraining
        if concept_emb[0]:
            self.register_buffer("concept_emb", torch.load(concept_emb[0]), False) # [#concepts, 1024]
            self.concept_thres = concept_emb[1]
            self.teacher_backbone = teacher_backbone # None
            # when resume, create teacher model in advance to load ckpt
            # self.teacher_backbone = copy.deepcopy(self.backbone)
            # # # oai_clip = torch.load("/mnt/output_storage/trained_models/oai_clip_weights/RN50_OAI_CLIP.pth") #("/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/trained_models/oai_clip_weights/RN50_OAI_CLIP.pth")
            # # # oai_clip_visual = {}
            # # # for key in oai_clip['model']:
            # # #     if 'visual' in key and 'num_batches_tracked' not in key:
            # # #         oai_clip_visual[key.replace('visual.','')] = oai_clip['model'][key]
            # # # self.teacher_backbone.load_state_dict(oai_clip_visual)
            for p in self.teacher_backbone.parameters():  # freeze visual encoder of teacher model
                p.requires_grad = False
            if concept_emb[2] is None: # teacher model uses the same concept embedding as student model
                self.register_buffer("teacher_concept_emb", torch.load(concept_emb[0]), False)
            else: # teacher model uses a seperate concept embedding
                self.register_buffer("teacher_concept_emb", torch.load(concept_emb[2]), False)
            self.teacher_roi_heads = teacher_roi_heads
        else:
            self.concept_emb = None

    @classmethod
    def from_config(cls, cfg):
        if cfg.MODEL.CLIP.CROP_REGION_TYPE == "RPN": # create isolated backbone & RPN
            # create offline cfg for the pretrained backbone & RPN
            from detectron2.config import get_cfg
            offline_cfg = get_cfg()
            offline_cfg.merge_from_file(cfg.MODEL.CLIP.OFFLINE_RPN_CONFIG)
            if cfg.MODEL.CLIP.OFFLINE_RPN_LSJ_PRETRAINED: # large-scale jittering (LSJ) pretrained RPN
                offline_cfg.MODEL.BACKBONE.FREEZE_AT = 0 # make all fronzon layers to "SyncBN"
                offline_cfg.MODEL.RESNETS.NORM = "SyncBN" # 5 resnet layers
                offline_cfg.MODEL.FPN.NORM = "SyncBN" # fpn layers
                offline_cfg.MODEL.RPN.CONV_DIMS = [-1, -1] # rpn layers
            if cfg.MODEL.CLIP.PRETRAIN_RPN_REGIONS:
                offline_cfg.MODEL.RPN.POST_NMS_TOPK_TEST = cfg.MODEL.CLIP.PRETRAIN_RPN_REGIONS 
            if cfg.MODEL.CLIP.OFFLINE_RPN_NMS_THRESH:
                offline_cfg.MODEL.RPN.NMS_THRESH = cfg.MODEL.CLIP.OFFLINE_RPN_NMS_THRESH  # 0.9
            # offline_cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.6
            # print("\n\n Set offline RPN.NMS_THRESH to {} and ROI_HEADS.NMS_THRESH_TEST to {}.\n\n".format(offline_cfg.MODEL.RPN.NMS_THRESH, offline_cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST))
            # create offline backbone and RPN
            offline_backbone = build_backbone(offline_cfg) # build_resnet_fpn_backbone(cfg, ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN)))
            offline_rpn = build_proposal_generator(offline_cfg, offline_backbone.output_shape())
            # convert to evaluation mode
            for p in offline_backbone.parameters(): p.requires_grad = False
            for p in offline_rpn.parameters(): p.requires_grad = False
            offline_backbone.eval()
            offline_rpn.eval()
        elif cfg.MODEL.CLIP.CROP_REGION_TYPE in ["GLOBAL", "GRID", "RANDOM"]:
            offline_backbone = None
            offline_rpn = None
            offline_cfg = None
        # visual encoder and roi_heads of student model
        backbone = build_backbone(cfg)

        if "swin" in cfg.MODEL.BACKBONE.NAME:
            roi_heads = build_roi_heads(cfg, backbone.image_encoder.output_shape())
        else:
            roi_heads = build_roi_heads(cfg, backbone.output_shape())

        # language encoder of student model
        language_encoder = build_clip_language_encoder(cfg)
        # visual encoder of teacher model
        teacher_cfg = copy.deepcopy(cfg)
        teacher_cfg.defrost()
        teacher_cfg.MODEL.RESNETS.DEPTH = teacher_cfg.MODEL.CLIP.TEACHER_RESNETS_DEPTH
        teacher_backbone = build_backbone(teacher_cfg)
        teacher_cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = teacher_cfg.MODEL.CLIP.TEACHER_POOLER_RESOLUTION
        teacher_roi_heads = build_roi_heads(teacher_cfg, teacher_backbone.output_shape())
        return {
            "offline_backbone": offline_backbone,
            "offline_proposal_generator": offline_rpn, 
            "backbone": backbone,
            "roi_heads": roi_heads, 
            "teacher_backbone": teacher_backbone,
            "teacher_roi_heads": teacher_roi_heads,
            "input_format": cfg.INPUT.FORMAT,
            "vis_period": cfg.VIS_PERIOD,
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
            "clip_crop_region_type" : cfg.MODEL.CLIP.CROP_REGION_TYPE,
            "use_clip_c4": 'FPN' not in cfg.MODEL.BACKBONE.NAME,
            "use_clip_attpool": cfg.MODEL.ROI_HEADS.NAME == 'PretrainRes5ROIHeads',
            "offline_input_format": offline_cfg.INPUT.FORMAT if offline_cfg else None,
            "offline_pixel_mean": offline_cfg.MODEL.PIXEL_MEAN if offline_cfg else None,
            "offline_pixel_std": offline_cfg.MODEL.PIXEL_STD if offline_cfg else None,
            "language_encoder": language_encoder,
            "matching_temp": cfg.MODEL.CLIP.CLSS_TEMP,
            "num_regions_per_img": cfg.MODEL.CLIP.PRETRAIN_SAMPLE_REGIONS,
            "img_txt_level": (cfg.MODEL.CLIP.PRETRAIN_IMG_TXT_LEVEL, cfg.MODEL.CLIP.PRETRAIN_ONLY_EOT),
            "gather_gpus": cfg.MODEL.CLIP.GATHER_GPUS,
            "grid_regions": cfg.MODEL.CLIP.GRID_REGIONS,
            "concept_emb": (cfg.MODEL.CLIP.CONCEPT_POOL_EMB, cfg.MODEL.CLIP.CONCEPT_THRES, cfg.MODEL.CLIP.TEACHER_CONCEPT_POOL_EMB),
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:

                * image: Tensor, image in (C, H, W) format.
                * instances (optional): groundtruth :class:`Instances`
                * proposals (optional): :class:`Instances`, precomputed proposals.

                Other information that's included in the original dicts, such as:

                * "height", "width" (int): the output resolution of the model, used in inference.
                  See :meth:`postprocess` for details.

        Returns:
            list[dict]:
                Each dict is the output for one input image.
                The dict contains one key "instances" whose value is a :class:`Instances`.
                The :class:`Instances` object has the following keys:
                "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints"
        """
        if not self.training:
            return self.inference(batched_inputs)
        if self.concept_emb is not None and self.teacher_backbone is None: # create a teacher model from an initialized student model; if resume, simply comment out this section
            self.teacher_backbone = copy.deepcopy(self.backbone)
            for p in self.teacher_backbone.parameters():  # freeze visual encoder of teacher model
                p.requires_grad = False
        gt_instances = None
        losses = {}
        
        # localization branch: offline modules to get the region proposals
        proposals = self.get_region_proposals(batched_inputs)
        global_proposals = self.create_global_proposals(batched_inputs)
        # for prop, g_prop in zip(proposals, global_proposals):  # append global proposal into each image
        #     prop.proposal_boxes.tensor = torch.cat((prop.proposal_boxes.tensor, g_prop.tensor), dim=0)

        # recognition branch: get 2D feature maps using the backbone of recognition branch
        images = self.preprocess_image(batched_inputs)
        features = self.backbone(images.tensor)
        region_feats = self.get_region_features(images, features, proposals, gt_instances)
        global_feats = self.get_region_features(images, features, global_proposals, gt_instances)

        # image-text level matching
        if self.img_txt_level:
            self.image_text_matching(batched_inputs, proposals, region_feats, losses, global_feats=global_feats, only_global=True)

        # region-phrase level matching
        if len(batched_inputs[0]) > 6:  # controlled by dataset loading
            phrase_text_embs = self.encode_phrase_text(batched_inputs)
        else:
            phrase_text_embs = None

        # region-concept level matching
        if self.concept_emb is not None:
            self.region_concept_matching(images, proposals, gt_instances, region_feats, losses, phrase_embs=phrase_text_embs)

        return losses

    def encode_phrase_text(self, batched_inputs):
        text = [x[6].view(-1,self.context_length).to(self.device) for i, x in enumerate(batched_inputs)]
        text = torch.cat(text, dim=0)
        text_embs = self.lang_encoder.encode_text(text, only_eot=True)  # [#phrases, transformer.width]
        return text_embs

    def region_concept_matching(self, images, proposals, gt_instances, region_feats, losses, phrase_embs=None):
        use_distill = True
        use_contrastive = True
        # get psuedo concept labels from teacher model
        concept_scores, target_inds, keep_regions, target_embs, label_mtx, phrase_label_mtx, phrase_target_regions \
            = self.get_psuedo_concept_labels(images, proposals, gt_instances, phrase_embs=phrase_embs)

        # prepare region features for the kept regions
        keep_region_feats = region_feats[keep_regions]
        keep_region_feats = keep_region_feats / keep_region_feats.norm(dim=-1, keepdim=True)

        if use_distill:
            # distillation learning: learns from the predictions of teacher model
            concept_emb = self.concept_emb / self.concept_emb.norm(dim=-1, keepdim=True)
            cls_scores = keep_region_feats @ concept_emb.t()  # [#kept_regions, #concepts]
            if isinstance(self.matching_temp, float): # Typical good values are 100.0 for euclidean, 10.0 for dot, 0.01 for cosine
                cls_scores_temp = cls_scores / self.matching_temp
            else:
                cls_scores_temp = cls_scores * self.matching_temp.exp() 
            
            # loss weights
            #rpn_weights = torch.cat([torch.sigmoid(p.objectness_logits) for p in proposals])[keep_regions]
            #focal_weights = self.focal_scaling(cls_scores_temp, target_inds)
            
            # calculate loss
            cls_loss = F.kl_div(F.softmax(cls_scores_temp, dim=1).log(), concept_scores, reduction='batchmean')  # input is log-probabilities, target is probabilities
            #cls_loss = SoftTargetCrossEntropy()(cls_scores_temp, concept_scores)
            #cls_loss = F.cross_entropy(cls_scores_temp, target_inds)
            #cls_loss = (F.cross_entropy(cls_scores_temp, target_inds, reduction="none") * focal_weights).mean()
            losses.update({"loss_region_distill": cls_loss}) #  * 0.8})

        if use_contrastive:
            # contrastive learning: matching student visual features with target teacher concept embs
            target_embs = target_embs / target_embs.norm(dim=-1, keepdim=True)
            match_scores = keep_region_feats @ target_embs.t()  # [#kept_regions, #kept_regions]
            if isinstance(self.matching_temp, float): # Typical good values are 100.0 for euclidean, 10.0 for dot, 0.01 for cosine
                match_scores_temp = match_scores / self.matching_temp
            else:
                match_scores_temp = match_scores * self.matching_temp.exp() 
            
            # loss weights
            #rpn_weights = torch.cat([torch.sigmoid(p.objectness_logits) for p in proposals])[keep_regions]
            #focal_weights = (1 - torch.sigmoid(torch.diag(match_scores_temp))) ** 0.8 # 1.0 # 2.0 # 

            # calculate loss given matching scores and label matrix
            contrastive_loss = MILCrossEntropy()(match_scores_temp, label_mtx, weights=None, avg_positives=False) # SoftTargetCrossEntropy()(match_scores_temp, label_mtx)
            #contrastive_loss = (MILCrossEntropy()(match_scores, label_mtx) + MILCrossEntropy()(match_scores.t(), label_mtx)) / 2.0
            losses.update({"loss_concept_contrastive": contrastive_loss})

        if phrase_embs is not None:
            phrase_embs = phrase_embs / phrase_embs.norm(dim=-1, keepdim=True)
            phrase_scores = phrase_embs @ phrase_target_regions.t()
            if isinstance(self.matching_temp, float): # Typical good values are 100.0 for euclidean, 10.0 for dot, 0.01 for cosine
                phrase_scores_temp = phrase_scores / self.matching_temp
            else:
                phrase_scores_temp = phrase_scores * self.matching_temp.exp() 
            contrastive_loss = MILCrossEntropy()(phrase_scores_temp, phrase_label_mtx, weights=None, avg_positives=False)
            #contrastive_loss = SoftTargetCrossEntropy()(phrase_scores_temp, phrase_label_mtx)
            losses.update({"loss_phrase_contrastive": contrastive_loss})

    def image_text_matching(self, batched_inputs, proposals, region_feats, losses, global_feats=None, only_global=False):
        # encode text
        num_cap = int(batched_inputs[0][1].size(0) / self.context_length)
        if num_cap == 1:  # one caption per image
            text = [x[1].view(1,-1).to(self.device) for x in batched_inputs]
        else: # multiple caption pers image, then randomly pick one
            rand_ind = [randint(0, num_cap-1) for _ in range(len(batched_inputs))]
            text = [x[1].view(-1,self.context_length)[rand_ind[i]:rand_ind[i]+1].to(self.device) for i, x in enumerate(batched_inputs)]
        text = torch.cat(text, dim=0)
        text_embs = self.lang_encoder.encode_text(text, only_eot=self.only_eot)  # [img_batch, n_ctx, transformer.width] or [img_batch, transformer.width]
        eot_pos = text.argmax(dim=-1) 

        # prepare region features and text embeddings
        if isinstance(proposals[0], Boxes):
            num_bbs = [len(prop) for prop in proposals]
        else: 
            num_bbs = [len(prop.proposal_boxes) for prop in proposals]
        if global_feats is not None and only_global:  # only global feature
            assert self.only_eot
            region_feats = global_feats
            region_feats = region_feats / region_feats.norm(dim=-1, keepdim=True)
            text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
            num_bbs = [1 for _ in num_bbs]
        elif global_feats is not None and not only_global:  # combine both global and region features
            assert self.only_eot
            keep_num = 20
            region_feats = region_feats.split(num_bbs)
            region_feats = [torch.mean(rg_f, dim=0, keepdim=True) for rg_f in region_feats]
            region_g_feats = [torch.cat((r_f[:keep_num], global_feats[i:i+1]), dim=0) for i, r_f in enumerate(region_feats)]
            region_g_feats = [torch.mean(rg_f, dim=0, keepdim=True) for rg_f in region_g_feats]
            region_g_feats = [rg_f / rg_f.norm(dim=-1, keepdim=True) for rg_f in region_g_feats]
            region_feats = torch.cat(region_g_feats)
            text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
            num_bbs = [1 for _ in num_bbs]
        else: # only region features
            num_bbs = torch.tensor(num_bbs).long().to(self.device)

        region_feats_full, min_bs = gather_tensors(region_feats) if self.gather_gpus else (region_feats, None)  #  gather across GPUs
        text_embs_full, min_bs = gather_tensors(text_embs) if self.gather_gpus else (text_embs, None)  #  gather across GPUs

        # matching visual features with text embs
        match_scores = region_feats_full @ text_embs_full.view(-1, text_embs_full.size(-1)).t()  # [#regions, img_batch * n_ctx]
        if global_feats is not None: # only global feature or combine both global and region features
            img_b = int(region_feats_full.size(0))
            pooled_score = match_scores
        else: # only region features
            eot_pos_full, min_bs = gather_tensors(eot_pos) if self.gather_gpus else (eot_pos, None)  #  gather across GPUs
            num_bbs_full, min_bs = gather_tensors(num_bbs) if self.gather_gpus else (num_bbs, None)  #  gather across GPUs
            pooled_score = []
            token_b = self.context_length
            # region_b = self.num_regions_per_img if global_feats is None else 1
            # img_b = int(region_feats_full.size(0) / region_b)
            img_b = num_bbs_full.size(0)
            rb_start = 0  # the starting index of regions
            for i in range(img_b): # for each image
                region_b = num_bbs_full[i].item()
                for j in range(img_b):  # for each text
                    if self.only_eot: # sentence level embs
                        # max pool over regions
                        this_s = torch.max(match_scores[rb_start:(rb_start+region_b), j:(j+1)], dim=0)[0]
                    else: # token level embs
                        # 3. softmax over regions as soft attention, then multiply attention with original logits, finally sum over matrix and divided by #tokens
                        # this_matrix = match_scores[rb_start:(rb_start+region_b), j*token_b:(j*token_b+eot_pos_full[j]+1)]
                        # this_att = F.softmax(this_matrix, dim=0)
                        # this_s = torch.sum(this_matrix * this_att) / (eot_pos_full[j]+1)
                        # 2. max pool over regions, and then avg over text tokens
                        # this_s = torch.sum(torch.max(match_scores[rb_start:(rb_start+region_b), j*token_b:(j*token_b+eot_pos_full[j]+1)], dim=0)[0]) / (eot_pos_full[j]+1)
                        # 1. max pool over regions, and then sum over text tokens
                        this_s = torch.sum(torch.max(match_scores[rb_start:(rb_start+region_b), j*token_b:(j*token_b+eot_pos_full[j]+1)], dim=0)[0])
                    pooled_score.append(this_s.view(1,1))
                rb_start += region_b
            assert rb_start == match_scores.size(0)
            pooled_score = torch.cat(pooled_score).view(img_b, img_b)  # diagnal elements are positive pairs and the others are negative pairs

        if isinstance(self.matching_temp,float):  # Typical good values are 100.0 for euclidean, 10.0 for dot, 0.01 for cosine
            pooled_score = pooled_score / self.matching_temp
        else:
            pooled_score = pooled_score * self.matching_temp.exp()
        contrast_target = torch.arange(img_b).to(self.device)
        row_loss = F.cross_entropy(pooled_score, contrast_target)
        col_loss = F.cross_entropy(pooled_score.t(), contrast_target)
        losses.update({"loss_img_txt_level": (row_loss + col_loss) / 2.0}) # losses.update({"loss_img_txt_level": (row_loss + col_loss) / 4.0}) # 

    def focal_scaling(self, logits, targets, gamma=1.0):
        p = F.softmax(logits, dim=1)
        p_t = p[torch.arange(p.size(0)).to(p.device), targets]  # get prob of target class
        weights = (1 - p_t) ** gamma
        return weights

    def get_psuedo_concept_labels(self, images, proposals, gt_instances, s_temp=0.01, norm=True, phrase_embs=None):
        """ Input images and region proposals, return matching results from teacher model
        """
        with torch.no_grad():
            # extract visual features from teacher model
            features = self.teacher_backbone(images.tensor)
            teacher_region_feats = self.teacher_roi_heads(images, features, proposals, gt_instances, res5=self.teacher_backbone.layer4, attnpool=self.teacher_backbone.attnpool)
            # match teacher visual features with teacher concept embs to create pseudo labels
            if norm:
                teacher_region_feats = teacher_region_feats / teacher_region_feats.norm(dim=-1, keepdim=True)
                teacher_concept_emb = self.teacher_concept_emb / self.teacher_concept_emb.norm(dim=-1, keepdim=True)
            else:
                teacher_concept_emb = self.teacher_concept_emb
            concept_scores = teacher_region_feats @ teacher_concept_emb.t()  # [#regions, #concepts]
            concept_scores = F.softmax(concept_scores / s_temp, dim=1)
            max_scores, max_inds = torch.max(concept_scores, dim=1)
            keep_regions = max_scores > self.concept_thres  # only keep the regions that have high matching score with a concept
            if keep_regions.nonzero().size(0) == 0: # if all regions can't match to any concept
                print("all regions can't match to any concept!")
                keep_regions = max_scores > 0.0 
            target_inds = max_inds[keep_regions]
            target_embs = self.concept_emb[target_inds] # the target embedding of student model
            label_mtx = (target_inds.view(-1, 1) == target_inds.view(1, -1)).type_as(teacher_region_feats)
            concept_scores = concept_scores[keep_regions]
            # matching kept regions with phrase-text to create labels
            if phrase_embs is None:
                phrase_label_mtx = None
                phrase_target_regions = None
            else:
                if norm:
                    phrase_embs = phrase_embs / phrase_embs.norm(dim=-1, keepdim=True)
                teacher_kept_feats = teacher_region_feats[keep_regions]
                phrase_scores = phrase_embs @ teacher_kept_feats.t()  # [#phrases, #keep regions]
                phrase_scores = F.softmax(phrase_scores / s_temp, dim=1)
                _, max_region_inds = torch.max(phrase_scores, dim=1)
                phrase_label_mtx = (max_region_inds.view(-1, 1) == max_region_inds.view(1, -1)).type_as(teacher_region_feats)
                phrase_target_regions = teacher_kept_feats[max_region_inds]
                
        return concept_scores, target_inds, keep_regions, target_embs, label_mtx, phrase_label_mtx, phrase_target_regions

    def get_region_features(self, images, features, proposals, gt_instances):
        """ Input images and region proposals, return region features
        """
        # Given the proposals, crop region features from 2D image features
        if self.use_clip_c4: # use C4 + resnet weights from CLIP
            if self.use_clip_attpool: # use att_pool from CLIP to match dimension
                region_feats = self.roi_heads(images, features, proposals, gt_instances, res5=self.backbone.layer4, attnpool=self.backbone.attnpool)
            else: # use default mean pool
                region_feats = self.roi_heads(images, features, proposals, gt_instances, res5=self.backbone.layer4)
        else:  # default setting
            region_feats = self.roi_heads(images, features, proposals, gt_instances)
        return region_feats

    def get_region_proposals(self, batched_inputs):
        """ Given image, return object proposals
        """
        if self.grid_regions:  # use grid boxes
            proposals = self.create_grid_boxes(batched_inputs)
        else:  # use object proposals
            with torch.no_grad():  
                if self.clip_crop_region_type == "GLOBAL":  # from a global box per image
                    proposals = self.create_global_proposals(batched_inputs) 
                elif self.clip_crop_region_type == "GRID":  # from grid proposals
                    proposals = self.create_grid_boxes(batched_inputs)
                elif self.clip_crop_region_type == "RANDOM":  # from random proposals
                    proposals = self.create_rand_boxes(batched_inputs)         
                elif self.clip_crop_region_type == "RPN": # from the backbone & RPN of standard Mask-RCNN, trained on base classes
                    if self.offline_backbone.training or self.offline_proposal_generator.training:  #  was set to True in training script
                        self.offline_backbone.eval() 
                        self.offline_proposal_generator.eval()  
                    images = self.offline_preprocess_image(batched_inputs)
                    features = self.offline_backbone(images.tensor)
                    if self.offline_proposal_generator is not None:
                        proposals, _ = self.offline_proposal_generator(images, features, None)     
                #visualize_proposals(batched_inputs, proposals, self.input_format, vis_pretrain=True)
        # randomly select proposals to avoid overfitting
        if self.training:
            #rand_inds = [torch.arange(len(p))[:self.num_regions_per_img].to(self.device) for p in proposals]
            rand_inds = [torch.randperm(len(p))[:self.num_regions_per_img].to(self.device) for p in proposals]
            proposals = [p[rand_inds[i]] for i, p in enumerate(proposals)]
        return proposals

    def offline_preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        NOTE: the image tsv in pretraining are already normalized pixel values and thus opposite to Detectron2 default input.
        Normalize, pad and batch the input images. Use detectron2 default processing (pixel mean & std).
        Note: Due to FPN size_divisibility, images are padded by right/bottom border. So FPN is consistent with C4 and GT boxes.
        """
        images = [x[0].to(self.device) for x in batched_inputs]
        if (self.input_format == 'RGB' and self.offline_input_format == 'BGR') or \
            (self.input_format == 'BGR' and self.offline_input_format == 'RGB'): # the input image follows the main config format ('RGB' or 'BGR')
            images = [x[[2,1,0],:,:] for x in images]
        if self.offline_div_pixel:
            images = [(x - self.offline_pixel_mean) / self.offline_pixel_std for x in images]
        else:
            images = [((x * 255.0) - self.offline_pixel_mean) / self.offline_pixel_std for x in images]
        images = ImageList.from_tensors(images, self.offline_backbone.size_divisibility)
        return images

    def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        NOTE: the image tsv in pretraining are already normalized pixel values and thus opposite to Detectron2 default input.
        Normalize, pad and batch the input images. Use CLIP default processing (pixel mean & std).
        Note: Due to FPN size_divisibility, images are padded by right/bottom border. So FPN is consistent with C4 and GT boxes.
        """
        images = [x[0].to(self.device) for x in batched_inputs]
        if self.div_pixel:
            images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        else:
            images = [((x * 255.0) - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.backbone.size_divisibility)
        return images

    def create_rand_boxes(self, batched_inputs, grid_length=8):
        """ create random boxes within an image, output random self.num_regions_per_img boxes
        return a list of Boxes
        """
        images = self.preprocess_image(batched_inputs)
        image_height = images.tensor.size(2)
        image_width = images.tensor.size(3)

        left_top_x = torch.tensor([i*(grid_length) for i in range(image_width // grid_length)])
        left_top_y = torch.tensor([i*(grid_length) for i in range(image_height // grid_length)])
        right_bot_x = torch.tensor([(i+1)*(grid_length) for i in range(image_width // grid_length)])
        right_bot_y = torch.tensor([(i+1)*(grid_length) for i in range(image_height // grid_length)])
        x_inds = torch.randint(0, left_top_x.size(0), (self.num_regions_per_img,))
        y_inds = torch.randint(0, left_top_y.size(0), (self.num_regions_per_img,))

        proposals = []
        for i in range(self.num_regions_per_img):
            rb_x_candidates = right_bot_x[x_inds[i]:]
            rb_x = rb_x_candidates[torch.randperm(rb_x_candidates.size(0))[0]]
            rb_y_candidates = right_bot_y[y_inds[i]:]
            rb_y = rb_y_candidates[torch.randperm(rb_y_candidates.size(0))[0]]
            this_box = torch.cat((left_top_x[x_inds[i]].view(1,1), left_top_y[y_inds[i]].view(1,1), rb_x.view(1,1), rb_y.view(1,1)),dim=-1)
            proposals.append(this_box)
        proposals = torch.cat(proposals).float().to(self.device)
        proposals = [Boxes(proposals) for i in range(len(batched_inputs))] # a list of Boxes
        return proposals

    def create_grid_boxes(self, batched_inputs, grid_length=32):
        """ create (image_height/32) * (image_width/32) pseudo grid boxes, and randomly sample self.num_regions_per_img boxes
        return a list of Boxes
        """
        images = self.preprocess_image(batched_inputs)
        image_height = images.tensor.size(2)
        image_width = images.tensor.size(3)

        left_top_x = torch.tensor([i*(grid_length) for i in range(image_width // grid_length)])
        left_top_y = torch.tensor([i*(grid_length) for i in range(image_height // grid_length)])
        right_bot_x = torch.tensor([(i+1)*(grid_length) for i in range(image_width // grid_length)])
        right_bot_y = torch.tensor([(i+1)*(grid_length) for i in range(image_height // grid_length)])
        left_top_x, left_top_y = torch.meshgrid(left_top_x, left_top_y)
        right_bot_x, right_bot_y = torch.meshgrid(right_bot_x, right_bot_y)
        grid_boxes = torch.cat((left_top_x.flatten().view(-1,1), left_top_y.flatten().view(-1,1),\
                                right_bot_x.flatten().view(-1,1), right_bot_y.flatten().view(-1,1),), dim=1)
        sample_ind = torch.randperm(grid_boxes.size(0))[:self.num_regions_per_img]
        grid_boxes = grid_boxes[sample_ind]
        grid_boxes = grid_boxes.float().to(self.device)
        proposals = [Boxes(grid_boxes) for i in range(len(batched_inputs))] # a list of Boxes
        return proposals

    def create_global_proposals(self, batched_inputs):
        """ create a single global box for an image, so as to extract global image features with RoIAlign on high-resolution images.
        """
        images = self.preprocess_image(batched_inputs)
        image_height = images.tensor.size(2)
        image_width = images.tensor.size(3)

        global_box = torch.tensor([0, 0, image_width, image_height]).view(1,4).float().to(self.device)
        proposals = [Boxes(global_box) for i in range(len(batched_inputs))] # a list of Boxes
        return proposals

    def inference(self, batched_inputs, detected_instances=None, do_postprocess=True):
        """
        Grounding inference: map region features with sentence tokens
        return: matching scores between region features and tokenized texts, region boxes in raw image resolution, image id & raw string texts & tokenized texts
        """
        assert len(batched_inputs) == 1 # only one instance per image during inference
        gt_instances = None
        losses = {}
        
        # localization branch: offline modules to get the region proposals
        proposals = self.get_region_proposals(batched_inputs)

        # recognition branch: get 2D feature maps using the backbone of recognition branch
        images = self.preprocess_image(batched_inputs)
        features = self.backbone(images.tensor)
        region_feats = self.get_region_features(images, features, proposals, gt_instances)

        # encode text
        num_cap = int(batched_inputs[0][1].size(0) / self.context_length)
        text = batched_inputs[0][1].view(num_cap, -1).to(self.device)  # [num_cap, context_length]
        text_embs = self.lang_encoder.encode_text(text, only_eot=False)  # [img_batch, n_ctx, transformer.width] or [img_batch, transformer.width]

        # matching visual features with text embs
        region_feats = region_feats / region_feats.norm(dim=-1, keepdim=True)
        text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
        match_scores = region_feats @ text_embs.view(-1, text_embs.size(-1)).t()  # [#regions, img_batch * n_ctx]
        # visualize_proposals(batched_inputs, proposals, self.input_format, vis_pretrain=True)

        # multiply RPN logits
        rpn_scores = [p.get('objectness_logits') for p in proposals][0]
        match_scores = (match_scores * rpn_scores[:, None]) ** 0.5
        
        # scale the object proposals back to raw image resolution
        if do_postprocess:
            assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
            processed_results = PretrainFastRCNN._postprocess(proposals, batched_inputs)
            return match_scores, processed_results

    @staticmethod
    def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Rescale the output instances to the target size.
        """
        # note: private function; subject to changes
        processed_results = []
        for results_per_image, input_per_image in zip(instances, batched_inputs):
            height, width = input_per_image[-1][2] # original image size, before resizing
            r = detector_postprocess(results_per_image, height, width)
            processed_results.append({"instances": r})
        return processed_results


def visualize_proposals(batched_inputs, proposals, input_format, vis_pretrain=False):
    """
    A function used to visualize images and proposals. It shows ground truth
    bounding boxes on the original image and up to 20 top-scoring predicted
    object proposals on the original image. Users can implement different
    visualization functions for different models.

    Args:
        batched_inputs (list): a list that contains input to the model.
        proposals (list): a list that contains predicted proposals. Both
            batched_inputs and proposals should have the same length.
    """
    from detectron2.utils.visualizer import Visualizer

    max_vis_prop = 50
    if vis_pretrain:
        for i, (input, prop) in enumerate(zip(batched_inputs, proposals)):
            img = input[0] * 255.0
            img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
            box_size = min(len(prop.proposal_boxes), max_vis_prop)
            v_pred = Visualizer(img, None)
            v_pred = v_pred.overlay_instances(
                boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
            )
            prop_img = v_pred.get_image()
            vis_img = prop_img
            to_save = Image.fromarray(np.array(vis_img, np.uint8))
            #to_save.save("output/regions/" + str(i) + ".png")
            #break  # only visualize one image in a batch
    else:
        for input, prop in zip(batched_inputs, proposals):
            img = input["image"]
            img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
            box_size = min(len(prop.proposal_boxes), max_vis_prop)
            v_pred = Visualizer(img, None)
            v_pred = v_pred.overlay_instances(
                boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
            )
            prop_img = v_pred.get_image()
            vis_img = prop_img
            # f_n = input['file_name']
            to_save = Image.fromarray(np.array(vis_img, np.uint8))
            #to_save.save("output/regions/" + "proposals.png")
            #break  # only visualize one image in a batch

def visualize_results(batched_inputs, results, input_format, vis_pretrain=False):
    """
    A function used to visualize images and results. It shows ground truth
    bounding boxes on the original image and up to 20 top-scoring predicted
    object results on the original image. Users can implement different
    visualization functions for different models.

    Args:
        batched_inputs (list): a list that contains input to the model.
        results (list): a list that contains predicted results. Both
            batched_inputs and results should have the same length.
    """
    from detectron2.utils.visualizer import Visualizer

    max_vis_prop = 1
    if vis_pretrain:
        for i, (input, prop) in enumerate(zip(batched_inputs, results)):
            img = input[0] * 255.0
            img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
            box_size = min(len(prop.proposal_boxes), max_vis_prop)
            v_pred = Visualizer(img, None)
            v_pred = v_pred.overlay_instances(
                boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
            )
            prop_img = v_pred.get_image()
            vis_img = prop_img
            to_save = Image.fromarray(np.array(vis_img, np.uint8))
            #to_save.save("output/regions/" + str(i) + ".png")
            #break  # only visualize one image in a batch
    else:
        for input, prop in zip(batched_inputs, results):
            img = input["image"]
            img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
            box_size = min(len(prop.pred_boxes), max_vis_prop)
            v_pred = Visualizer(img, None)
            v_pred = v_pred.overlay_instances(
                boxes=prop.pred_boxes[0:box_size].tensor.cpu().numpy()
            )
            prop_img = v_pred.get_image()
            vis_img = prop_img
            # f_n = input['file_name']
            to_save = Image.fromarray(np.array(vis_img, np.uint8))
            #to_save.save("output/regions/" + "results.png")
            #break  # only visualize one image in a batch
    return to_save