Spaces:
Runtime error
Runtime error
File size: 7,608 Bytes
4121bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Copyright (c) Facebook, Inc. and its affiliates.
import itertools
import json
import numpy as np
import os
import torch
from pycocotools.cocoeval import COCOeval, maskUtils
from detectron2.structures import BoxMode, RotatedBoxes, pairwise_iou_rotated
from detectron2.utils.file_io import PathManager
from .coco_evaluation import COCOEvaluator
class RotatedCOCOeval(COCOeval):
@staticmethod
def is_rotated(box_list):
if type(box_list) == np.ndarray:
return box_list.shape[1] == 5
elif type(box_list) == list:
if box_list == []: # cannot decide the box_dim
return False
return np.all(
np.array(
[
(len(obj) == 5) and ((type(obj) == list) or (type(obj) == np.ndarray))
for obj in box_list
]
)
)
return False
@staticmethod
def boxlist_to_tensor(boxlist, output_box_dim):
if type(boxlist) == np.ndarray:
box_tensor = torch.from_numpy(boxlist)
elif type(boxlist) == list:
if boxlist == []:
return torch.zeros((0, output_box_dim), dtype=torch.float32)
else:
box_tensor = torch.FloatTensor(boxlist)
else:
raise Exception("Unrecognized boxlist type")
input_box_dim = box_tensor.shape[1]
if input_box_dim != output_box_dim:
if input_box_dim == 4 and output_box_dim == 5:
box_tensor = BoxMode.convert(box_tensor, BoxMode.XYWH_ABS, BoxMode.XYWHA_ABS)
else:
raise Exception(
"Unable to convert from {}-dim box to {}-dim box".format(
input_box_dim, output_box_dim
)
)
return box_tensor
def compute_iou_dt_gt(self, dt, gt, is_crowd):
if self.is_rotated(dt) or self.is_rotated(gt):
# TODO: take is_crowd into consideration
assert all(c == 0 for c in is_crowd)
dt = RotatedBoxes(self.boxlist_to_tensor(dt, output_box_dim=5))
gt = RotatedBoxes(self.boxlist_to_tensor(gt, output_box_dim=5))
return pairwise_iou_rotated(dt, gt)
else:
# This is the same as the classical COCO evaluation
return maskUtils.iou(dt, gt, is_crowd)
def computeIoU(self, imgId, catId):
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return []
inds = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in inds]
if len(dt) > p.maxDets[-1]:
dt = dt[0 : p.maxDets[-1]]
assert p.iouType == "bbox", "unsupported iouType for iou computation"
g = [g["bbox"] for g in gt]
d = [d["bbox"] for d in dt]
# compute iou between each dt and gt region
iscrowd = [int(o["iscrowd"]) for o in gt]
# Note: this function is copied from cocoeval.py in cocoapi
# and the major difference is here.
ious = self.compute_iou_dt_gt(d, g, iscrowd)
return ious
class RotatedCOCOEvaluator(COCOEvaluator):
"""
Evaluate object proposal/instance detection outputs using COCO-like metrics and APIs,
with rotated boxes support.
Note: this uses IOU only and does not consider angle differences.
"""
def process(self, inputs, outputs):
"""
Args:
inputs: the inputs to a COCO model (e.g., GeneralizedRCNN).
It is a list of dict. Each dict corresponds to an image and
contains keys like "height", "width", "file_name", "image_id".
outputs: the outputs of a COCO model. It is a list of dicts with key
"instances" that contains :class:`Instances`.
"""
for input, output in zip(inputs, outputs):
prediction = {"image_id": input["image_id"]}
if "instances" in output:
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = self.instances_to_json(instances, input["image_id"])
if "proposals" in output:
prediction["proposals"] = output["proposals"].to(self._cpu_device)
self._predictions.append(prediction)
def instances_to_json(self, instances, img_id):
num_instance = len(instances)
if num_instance == 0:
return []
boxes = instances.pred_boxes.tensor.numpy()
if boxes.shape[1] == 4:
boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
boxes = boxes.tolist()
scores = instances.scores.tolist()
classes = instances.pred_classes.tolist()
results = []
for k in range(num_instance):
result = {
"image_id": img_id,
"category_id": classes[k],
"bbox": boxes[k],
"score": scores[k],
}
results.append(result)
return results
def _eval_predictions(self, predictions, img_ids=None): # img_ids: unused
"""
Evaluate predictions on the given tasks.
Fill self._results with the metrics of the tasks.
"""
self._logger.info("Preparing results for COCO format ...")
coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
# unmap the category ids for COCO
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
reverse_id_mapping = {
v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
}
for result in coco_results:
result["category_id"] = reverse_id_mapping[result["category_id"]]
if self._output_dir:
file_path = os.path.join(self._output_dir, "coco_instances_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(coco_results))
f.flush()
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info("Evaluating predictions ...")
assert self._tasks is None or set(self._tasks) == {
"bbox"
}, "[RotatedCOCOEvaluator] Only bbox evaluation is supported"
coco_eval = (
self._evaluate_predictions_on_coco(self._coco_api, coco_results)
if len(coco_results) > 0
else None # cocoapi does not handle empty results very well
)
task = "bbox"
res = self._derive_coco_results(
coco_eval, task, class_names=self._metadata.get("thing_classes")
)
self._results[task] = res
def _evaluate_predictions_on_coco(self, coco_gt, coco_results):
"""
Evaluate the coco results using COCOEval API.
"""
assert len(coco_results) > 0
coco_dt = coco_gt.loadRes(coco_results)
# Only bbox is supported for now
coco_eval = RotatedCOCOeval(coco_gt, coco_dt, iouType="bbox")
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
return coco_eval
|