File size: 19,325 Bytes
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import itertools
import numpy as np
from typing import Any, Iterator, List, Union
import pycocotools.mask as mask_util
import torch
from torch import device

from detectron2.layers.roi_align import ROIAlign
from detectron2.utils.memory import retry_if_cuda_oom

from .boxes import Boxes


def polygon_area(x, y):
    # Using the shoelace formula
    # https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates
    return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))


def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray:
    """
    Args:
        polygons (list[ndarray]): each array has shape (Nx2,)
        height, width (int)

    Returns:
        ndarray: a bool mask of shape (height, width)
    """
    assert len(polygons) > 0, "COCOAPI does not support empty polygons"
    rles = mask_util.frPyObjects(polygons, height, width)
    rle = mask_util.merge(rles)
    return mask_util.decode(rle).astype(np.bool)


def rasterize_polygons_within_box(
    polygons: List[np.ndarray], box: np.ndarray, mask_size: int
) -> torch.Tensor:
    """
    Rasterize the polygons into a mask image and
    crop the mask content in the given box.
    The cropped mask is resized to (mask_size, mask_size).

    This function is used when generating training targets for mask head in Mask R-CNN.
    Given original ground-truth masks for an image, new ground-truth mask
    training targets in the size of `mask_size x mask_size`
    must be provided for each predicted box. This function will be called to
    produce such targets.

    Args:
        polygons (list[ndarray[float]]): a list of polygons, which represents an instance.
        box: 4-element numpy array
        mask_size (int):

    Returns:
        Tensor: BoolTensor of shape (mask_size, mask_size)
    """
    # 1. Shift the polygons w.r.t the boxes
    w, h = box[2] - box[0], box[3] - box[1]

    polygons = copy.deepcopy(polygons)
    for p in polygons:
        p[0::2] = p[0::2] - box[0]
        p[1::2] = p[1::2] - box[1]

    # 2. Rescale the polygons to the new box size
    # max() to avoid division by small number
    ratio_h = mask_size / max(h, 0.1)
    ratio_w = mask_size / max(w, 0.1)

    if ratio_h == ratio_w:
        for p in polygons:
            p *= ratio_h
    else:
        for p in polygons:
            p[0::2] *= ratio_w
            p[1::2] *= ratio_h

    # 3. Rasterize the polygons with coco api
    mask = polygons_to_bitmask(polygons, mask_size, mask_size)
    mask = torch.from_numpy(mask)
    return mask


class BitMasks:
    """
    This class stores the segmentation masks for all objects in one image, in
    the form of bitmaps.

    Attributes:
        tensor: bool Tensor of N,H,W, representing N instances in the image.
    """

    def __init__(self, tensor: Union[torch.Tensor, np.ndarray]):
        """
        Args:
            tensor: bool Tensor of N,H,W, representing N instances in the image.
        """
        device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu")
        tensor = torch.as_tensor(tensor, dtype=torch.bool, device=device)
        assert tensor.dim() == 3, tensor.size()
        self.image_size = tensor.shape[1:]
        self.tensor = tensor

    @torch.jit.unused
    def to(self, *args: Any, **kwargs: Any) -> "BitMasks":
        return BitMasks(self.tensor.to(*args, **kwargs))

    @property
    def device(self) -> torch.device:
        return self.tensor.device

    @torch.jit.unused
    def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks":
        """
        Returns:
            BitMasks: Create a new :class:`BitMasks` by indexing.

        The following usage are allowed:

        1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask.
        2. `new_masks = masks[2:10]`: return a slice of masks.
        3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor
           with `length = len(masks)`. Nonzero elements in the vector will be selected.

        Note that the returned object might share storage with this object,
        subject to Pytorch's indexing semantics.
        """
        if isinstance(item, int):
            return BitMasks(self.tensor[item].view(1, -1))
        m = self.tensor[item]
        assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format(
            item, m.shape
        )
        return BitMasks(m)

    @torch.jit.unused
    def __iter__(self) -> torch.Tensor:
        yield from self.tensor

    @torch.jit.unused
    def __repr__(self) -> str:
        s = self.__class__.__name__ + "("
        s += "num_instances={})".format(len(self.tensor))
        return s

    def __len__(self) -> int:
        return self.tensor.shape[0]

    def nonempty(self) -> torch.Tensor:
        """
        Find masks that are non-empty.

        Returns:
            Tensor: a BoolTensor which represents
                whether each mask is empty (False) or non-empty (True).
        """
        return self.tensor.flatten(1).any(dim=1)

    @staticmethod
    def from_polygon_masks(
        polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int
    ) -> "BitMasks":
        """
        Args:
            polygon_masks (list[list[ndarray]] or PolygonMasks)
            height, width (int)
        """
        if isinstance(polygon_masks, PolygonMasks):
            polygon_masks = polygon_masks.polygons
        masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks]
        return BitMasks(torch.stack([torch.from_numpy(x) for x in masks]))

    @staticmethod
    def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks":
        """
        Args:
            roi_masks:
            height, width (int):
        """
        return roi_masks.to_bitmasks(height, width)

    def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor:
        """
        Crop each bitmask by the given box, and resize results to (mask_size, mask_size).
        This can be used to prepare training targets for Mask R-CNN.
        It has less reconstruction error compared to rasterization with polygons.
        However we observe no difference in accuracy,
        but BitMasks requires more memory to store all the masks.

        Args:
            boxes (Tensor): Nx4 tensor storing the boxes for each mask
            mask_size (int): the size of the rasterized mask.

        Returns:
            Tensor:
                A bool tensor of shape (N, mask_size, mask_size), where
                N is the number of predicted boxes for this image.
        """
        assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self))
        device = self.tensor.device

        batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None]
        rois = torch.cat([batch_inds, boxes], dim=1)  # Nx5

        bit_masks = self.tensor.to(dtype=torch.float32)
        rois = rois.to(device=device)
        output = (
            ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True)
            .forward(bit_masks[:, None, :, :], rois)
            .squeeze(1)
        )
        output = output >= 0.5
        return output

    def get_bounding_boxes(self) -> Boxes:
        """
        Returns:
            Boxes: tight bounding boxes around bitmasks.
            If a mask is empty, it's bounding box will be all zero.
        """
        boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32)
        x_any = torch.any(self.tensor, dim=1)
        y_any = torch.any(self.tensor, dim=2)
        for idx in range(self.tensor.shape[0]):
            x = torch.where(x_any[idx, :])[0]
            y = torch.where(y_any[idx, :])[0]
            if len(x) > 0 and len(y) > 0:
                boxes[idx, :] = torch.as_tensor(
                    [x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32
                )
        return Boxes(boxes)

    @staticmethod
    def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks":
        """
        Concatenates a list of BitMasks into a single BitMasks

        Arguments:
            bitmasks_list (list[BitMasks])

        Returns:
            BitMasks: the concatenated BitMasks
        """
        assert isinstance(bitmasks_list, (list, tuple))
        assert len(bitmasks_list) > 0
        assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list)

        cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0))
        return cat_bitmasks


class PolygonMasks:
    """
    This class stores the segmentation masks for all objects in one image, in the form of polygons.

    Attributes:
        polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon.
    """

    def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]):
        """
        Arguments:
            polygons (list[list[np.ndarray]]): The first
                level of the list correspond to individual instances,
                the second level to all the polygons that compose the
                instance, and the third level to the polygon coordinates.
                The third level array should have the format of
                [x0, y0, x1, y1, ..., xn, yn] (n >= 3).
        """
        if not isinstance(polygons, list):
            raise ValueError(
                "Cannot create PolygonMasks: Expect a list of list of polygons per image. "
                "Got '{}' instead.".format(type(polygons))
            )

        def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray:
            # Use float64 for higher precision, because why not?
            # Always put polygons on CPU (self.to is a no-op) since they
            # are supposed to be small tensors.
            # May need to change this assumption if GPU placement becomes useful
            if isinstance(t, torch.Tensor):
                t = t.cpu().numpy()
            return np.asarray(t).astype("float64")

        def process_polygons(
            polygons_per_instance: List[Union[torch.Tensor, np.ndarray]]
        ) -> List[np.ndarray]:
            if not isinstance(polygons_per_instance, list):
                raise ValueError(
                    "Cannot create polygons: Expect a list of polygons per instance. "
                    "Got '{}' instead.".format(type(polygons_per_instance))
                )
            # transform each polygon to a numpy array
            polygons_per_instance = [_make_array(p) for p in polygons_per_instance]
            for polygon in polygons_per_instance:
                if len(polygon) % 2 != 0 or len(polygon) < 6:
                    raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.")
            return polygons_per_instance

        self.polygons: List[List[np.ndarray]] = [
            process_polygons(polygons_per_instance) for polygons_per_instance in polygons
        ]

    def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks":
        return self

    @property
    def device(self) -> torch.device:
        return torch.device("cpu")

    def get_bounding_boxes(self) -> Boxes:
        """
        Returns:
            Boxes: tight bounding boxes around polygon masks.
        """
        boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32)
        for idx, polygons_per_instance in enumerate(self.polygons):
            minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32)
            maxxy = torch.zeros(2, dtype=torch.float32)
            for polygon in polygons_per_instance:
                coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32)
                minxy = torch.min(minxy, torch.min(coords, dim=0).values)
                maxxy = torch.max(maxxy, torch.max(coords, dim=0).values)
            boxes[idx, :2] = minxy
            boxes[idx, 2:] = maxxy
        return Boxes(boxes)

    def nonempty(self) -> torch.Tensor:
        """
        Find masks that are non-empty.

        Returns:
            Tensor:
                a BoolTensor which represents whether each mask is empty (False) or not (True).
        """
        keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons]
        return torch.from_numpy(np.asarray(keep, dtype=np.bool))

    def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks":
        """
        Support indexing over the instances and return a `PolygonMasks` object.
        `item` can be:

        1. An integer. It will return an object with only one instance.
        2. A slice. It will return an object with the selected instances.
        3. A list[int]. It will return an object with the selected instances,
           correpsonding to the indices in the list.
        4. A vector mask of type BoolTensor, whose length is num_instances.
           It will return an object with the instances whose mask is nonzero.
        """
        if isinstance(item, int):
            selected_polygons = [self.polygons[item]]
        elif isinstance(item, slice):
            selected_polygons = self.polygons[item]
        elif isinstance(item, list):
            selected_polygons = [self.polygons[i] for i in item]
        elif isinstance(item, torch.Tensor):
            # Polygons is a list, so we have to move the indices back to CPU.
            if item.dtype == torch.bool:
                assert item.dim() == 1, item.shape
                item = item.nonzero().squeeze(1).cpu().numpy().tolist()
            elif item.dtype in [torch.int32, torch.int64]:
                item = item.cpu().numpy().tolist()
            else:
                raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype))
            selected_polygons = [self.polygons[i] for i in item]
        return PolygonMasks(selected_polygons)

    def __iter__(self) -> Iterator[List[np.ndarray]]:
        """
        Yields:
            list[ndarray]: the polygons for one instance.
            Each Tensor is a float64 vector representing a polygon.
        """
        return iter(self.polygons)

    def __repr__(self) -> str:
        s = self.__class__.__name__ + "("
        s += "num_instances={})".format(len(self.polygons))
        return s

    def __len__(self) -> int:
        return len(self.polygons)

    def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor:
        """
        Crop each mask by the given box, and resize results to (mask_size, mask_size).
        This can be used to prepare training targets for Mask R-CNN.

        Args:
            boxes (Tensor): Nx4 tensor storing the boxes for each mask
            mask_size (int): the size of the rasterized mask.

        Returns:
            Tensor: A bool tensor of shape (N, mask_size, mask_size), where
            N is the number of predicted boxes for this image.
        """
        assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self))

        device = boxes.device
        # Put boxes on the CPU, as the polygon representation is not efficient GPU-wise
        # (several small tensors for representing a single instance mask)
        boxes = boxes.to(torch.device("cpu"))

        results = [
            rasterize_polygons_within_box(poly, box.numpy(), mask_size)
            for poly, box in zip(self.polygons, boxes)
        ]
        """
        poly: list[list[float]], the polygons for one instance
        box: a tensor of shape (4,)
        """
        if len(results) == 0:
            return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device)
        return torch.stack(results, dim=0).to(device=device)

    def area(self):
        """
        Computes area of the mask.
        Only works with Polygons, using the shoelace formula:
        https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates

        Returns:
            Tensor: a vector, area for each instance
        """

        area = []
        for polygons_per_instance in self.polygons:
            area_per_instance = 0
            for p in polygons_per_instance:
                area_per_instance += polygon_area(p[0::2], p[1::2])
            area.append(area_per_instance)

        return torch.tensor(area)

    @staticmethod
    def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks":
        """
        Concatenates a list of PolygonMasks into a single PolygonMasks

        Arguments:
            polymasks_list (list[PolygonMasks])

        Returns:
            PolygonMasks: the concatenated PolygonMasks
        """
        assert isinstance(polymasks_list, (list, tuple))
        assert len(polymasks_list) > 0
        assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list)

        cat_polymasks = type(polymasks_list[0])(
            list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list))
        )
        return cat_polymasks


class ROIMasks:
    """
    Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given,
    full-image bitmask can be obtained by "pasting" the mask on the region defined
    by the corresponding ROI box.
    """

    def __init__(self, tensor: torch.Tensor):
        """
        Args:
            tensor: (N, M, M) mask tensor that defines the mask within each ROI.
        """
        if tensor.dim() != 3:
            raise ValueError("ROIMasks must take a masks of 3 dimension.")
        self.tensor = tensor

    def to(self, device: torch.device) -> "ROIMasks":
        return ROIMasks(self.tensor.to(device))

    @property
    def device(self) -> device:
        return self.tensor.device

    def __len__(self):
        return self.tensor.shape[0]

    def __getitem__(self, item) -> "ROIMasks":
        """
        Returns:
            ROIMasks: Create a new :class:`ROIMasks` by indexing.

        The following usage are allowed:

        1. `new_masks = masks[2:10]`: return a slice of masks.
        2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor
           with `length = len(masks)`. Nonzero elements in the vector will be selected.

        Note that the returned object might share storage with this object,
        subject to Pytorch's indexing semantics.
        """
        t = self.tensor[item]
        if t.dim() != 3:
            raise ValueError(
                f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!"
            )
        return ROIMasks(t)

    @torch.jit.unused
    def __repr__(self) -> str:
        s = self.__class__.__name__ + "("
        s += "num_instances={})".format(len(self.tensor))
        return s

    @torch.jit.unused
    def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5):
        """
        Args:

        """
        from detectron2.layers import paste_masks_in_image

        paste = retry_if_cuda_oom(paste_masks_in_image)
        bitmasks = paste(
            self.tensor,
            boxes,
            (height, width),
            threshold=threshold,
        )
        return BitMasks(bitmasks)