File size: 10,844 Bytes
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright (c) Facebook, Inc. and its affiliates.
#pragma once

#include <cassert>
#include <cmath>

#if defined(__CUDACC__) || __HCC__ == 1 || __HIP__ == 1
// Designates functions callable from the host (CPU) and the device (GPU)
#define HOST_DEVICE __host__ __device__
#define HOST_DEVICE_INLINE HOST_DEVICE __forceinline__
#else
#include <algorithm>
#define HOST_DEVICE
#define HOST_DEVICE_INLINE HOST_DEVICE inline
#endif

namespace detectron2 {

namespace {

template <typename T>
struct RotatedBox {
  T x_ctr, y_ctr, w, h, a;
};

template <typename T>
struct Point {
  T x, y;
  HOST_DEVICE_INLINE Point(const T& px = 0, const T& py = 0) : x(px), y(py) {}
  HOST_DEVICE_INLINE Point operator+(const Point& p) const {
    return Point(x + p.x, y + p.y);
  }
  HOST_DEVICE_INLINE Point& operator+=(const Point& p) {
    x += p.x;
    y += p.y;
    return *this;
  }
  HOST_DEVICE_INLINE Point operator-(const Point& p) const {
    return Point(x - p.x, y - p.y);
  }
  HOST_DEVICE_INLINE Point operator*(const T coeff) const {
    return Point(x * coeff, y * coeff);
  }
};

template <typename T>
HOST_DEVICE_INLINE T dot_2d(const Point<T>& A, const Point<T>& B) {
  return A.x * B.x + A.y * B.y;
}

// R: result type. can be different from input type
template <typename T, typename R = T>
HOST_DEVICE_INLINE R cross_2d(const Point<T>& A, const Point<T>& B) {
  return static_cast<R>(A.x) * static_cast<R>(B.y) -
      static_cast<R>(B.x) * static_cast<R>(A.y);
}

template <typename T>
HOST_DEVICE_INLINE void get_rotated_vertices(
    const RotatedBox<T>& box,
    Point<T> (&pts)[4]) {
  // M_PI / 180. == 0.01745329251
  double theta = box.a * 0.01745329251;
  T cosTheta2 = (T)cos(theta) * 0.5f;
  T sinTheta2 = (T)sin(theta) * 0.5f;

  // y: top --> down; x: left --> right
  pts[0].x = box.x_ctr + sinTheta2 * box.h + cosTheta2 * box.w;
  pts[0].y = box.y_ctr + cosTheta2 * box.h - sinTheta2 * box.w;
  pts[1].x = box.x_ctr - sinTheta2 * box.h + cosTheta2 * box.w;
  pts[1].y = box.y_ctr - cosTheta2 * box.h - sinTheta2 * box.w;
  pts[2].x = 2 * box.x_ctr - pts[0].x;
  pts[2].y = 2 * box.y_ctr - pts[0].y;
  pts[3].x = 2 * box.x_ctr - pts[1].x;
  pts[3].y = 2 * box.y_ctr - pts[1].y;
}

template <typename T>
HOST_DEVICE_INLINE int get_intersection_points(
    const Point<T> (&pts1)[4],
    const Point<T> (&pts2)[4],
    Point<T> (&intersections)[24]) {
  // Line vector
  // A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
  Point<T> vec1[4], vec2[4];
  for (int i = 0; i < 4; i++) {
    vec1[i] = pts1[(i + 1) % 4] - pts1[i];
    vec2[i] = pts2[(i + 1) % 4] - pts2[i];
  }

  // When computing the intersection area, it doesn't hurt if we have
  // more (duplicated/approximate) intersections/vertices than needed,
  // while it can cause drastic difference if we miss an intersection/vertex.
  // Therefore, we add an epsilon to relax the comparisons between
  // the float point numbers that decide the intersection points.
  double EPS = 1e-5;

  // Line test - test all line combos for intersection
  int num = 0; // number of intersections
  for (int i = 0; i < 4; i++) {
    for (int j = 0; j < 4; j++) {
      // Solve for 2x2 Ax=b
      T det = cross_2d<T>(vec2[j], vec1[i]);

      // This takes care of parallel lines
      if (fabs(det) <= 1e-14) {
        continue;
      }

      auto vec12 = pts2[j] - pts1[i];

      T t1 = cross_2d<T>(vec2[j], vec12) / det;
      T t2 = cross_2d<T>(vec1[i], vec12) / det;

      if (t1 > -EPS && t1 < 1.0f + EPS && t2 > -EPS && t2 < 1.0f + EPS) {
        intersections[num++] = pts1[i] + vec1[i] * t1;
      }
    }
  }

  // Check for vertices of rect1 inside rect2
  {
    const auto& AB = vec2[0];
    const auto& DA = vec2[3];
    auto ABdotAB = dot_2d<T>(AB, AB);
    auto ADdotAD = dot_2d<T>(DA, DA);
    for (int i = 0; i < 4; i++) {
      // assume ABCD is the rectangle, and P is the point to be judged
      // P is inside ABCD iff. P's projection on AB lies within AB
      // and P's projection on AD lies within AD

      auto AP = pts1[i] - pts2[0];

      auto APdotAB = dot_2d<T>(AP, AB);
      auto APdotAD = -dot_2d<T>(AP, DA);

      if ((APdotAB > -EPS) && (APdotAD > -EPS) && (APdotAB < ABdotAB + EPS) &&
          (APdotAD < ADdotAD + EPS)) {
        intersections[num++] = pts1[i];
      }
    }
  }

  // Reverse the check - check for vertices of rect2 inside rect1
  {
    const auto& AB = vec1[0];
    const auto& DA = vec1[3];
    auto ABdotAB = dot_2d<T>(AB, AB);
    auto ADdotAD = dot_2d<T>(DA, DA);
    for (int i = 0; i < 4; i++) {
      auto AP = pts2[i] - pts1[0];

      auto APdotAB = dot_2d<T>(AP, AB);
      auto APdotAD = -dot_2d<T>(AP, DA);

      if ((APdotAB > -EPS) && (APdotAD > -EPS) && (APdotAB < ABdotAB + EPS) &&
          (APdotAD < ADdotAD + EPS)) {
        intersections[num++] = pts2[i];
      }
    }
  }

  return num;
}

template <typename T>
HOST_DEVICE_INLINE int convex_hull_graham(
    const Point<T> (&p)[24],
    const int& num_in,
    Point<T> (&q)[24],
    bool shift_to_zero = false) {
  assert(num_in >= 2);

  // Step 1:
  // Find point with minimum y
  // if more than 1 points have the same minimum y,
  // pick the one with the minimum x.
  int t = 0;
  for (int i = 1; i < num_in; i++) {
    if (p[i].y < p[t].y || (p[i].y == p[t].y && p[i].x < p[t].x)) {
      t = i;
    }
  }
  auto& start = p[t]; // starting point

  // Step 2:
  // Subtract starting point from every points (for sorting in the next step)
  for (int i = 0; i < num_in; i++) {
    q[i] = p[i] - start;
  }

  // Swap the starting point to position 0
  auto tmp = q[0];
  q[0] = q[t];
  q[t] = tmp;

  // Step 3:
  // Sort point 1 ~ num_in according to their relative cross-product values
  // (essentially sorting according to angles)
  // If the angles are the same, sort according to their distance to origin
  T dist[24];
#if defined(__CUDACC__) || __HCC__ == 1 || __HIP__ == 1
  // compute distance to origin before sort, and sort them together with the
  // points
  for (int i = 0; i < num_in; i++) {
    dist[i] = dot_2d<T>(q[i], q[i]);
  }

  // CUDA version
  // In the future, we can potentially use thrust
  // for sorting here to improve speed (though not guaranteed)
  for (int i = 1; i < num_in - 1; i++) {
    for (int j = i + 1; j < num_in; j++) {
      T crossProduct = cross_2d<T>(q[i], q[j]);
      if ((crossProduct < -1e-6) ||
          (fabs(crossProduct) < 1e-6 && dist[i] > dist[j])) {
        auto q_tmp = q[i];
        q[i] = q[j];
        q[j] = q_tmp;
        auto dist_tmp = dist[i];
        dist[i] = dist[j];
        dist[j] = dist_tmp;
      }
    }
  }
#else
  // CPU version
  std::sort(
      q + 1, q + num_in, [](const Point<T>& A, const Point<T>& B) -> bool {
        T temp = cross_2d<T>(A, B);
        if (fabs(temp) < 1e-6) {
          return dot_2d<T>(A, A) < dot_2d<T>(B, B);
        } else {
          return temp > 0;
        }
      });
  // compute distance to origin after sort, since the points are now different.
  for (int i = 0; i < num_in; i++) {
    dist[i] = dot_2d<T>(q[i], q[i]);
  }
#endif

  // Step 4:
  // Make sure there are at least 2 points (that don't overlap with each other)
  // in the stack
  int k; // index of the non-overlapped second point
  for (k = 1; k < num_in; k++) {
    if (dist[k] > 1e-8) {
      break;
    }
  }
  if (k == num_in) {
    // We reach the end, which means the convex hull is just one point
    q[0] = p[t];
    return 1;
  }
  q[1] = q[k];
  int m = 2; // 2 points in the stack
  // Step 5:
  // Finally we can start the scanning process.
  // When a non-convex relationship between the 3 points is found
  // (either concave shape or duplicated points),
  // we pop the previous point from the stack
  // until the 3-point relationship is convex again, or
  // until the stack only contains two points
  for (int i = k + 1; i < num_in; i++) {
    while (m > 1) {
      auto q1 = q[i] - q[m - 2], q2 = q[m - 1] - q[m - 2];
      // cross_2d() uses FMA and therefore computes round(round(q1.x*q2.y) -
      // q2.x*q1.y) So it may not return 0 even when q1==q2. Therefore we
      // compare round(q1.x*q2.y) and round(q2.x*q1.y) directly. (round means
      // round to nearest floating point).
      if (q1.x * q2.y >= q2.x * q1.y)
        m--;
      else
        break;
    }
    // Using double also helps, but float can solve the issue for now.
    // while (m > 1 && cross_2d<T, double>(q[i] - q[m - 2], q[m - 1] - q[m - 2])
    // >= 0) {
    //     m--;
    // }
    q[m++] = q[i];
  }

  // Step 6 (Optional):
  // In general sense we need the original coordinates, so we
  // need to shift the points back (reverting Step 2)
  // But if we're only interested in getting the area/perimeter of the shape
  // We can simply return.
  if (!shift_to_zero) {
    for (int i = 0; i < m; i++) {
      q[i] += start;
    }
  }

  return m;
}

template <typename T>
HOST_DEVICE_INLINE T polygon_area(const Point<T> (&q)[24], const int& m) {
  if (m <= 2) {
    return 0;
  }

  T area = 0;
  for (int i = 1; i < m - 1; i++) {
    area += fabs(cross_2d<T>(q[i] - q[0], q[i + 1] - q[0]));
  }

  return area / 2.0;
}

template <typename T>
HOST_DEVICE_INLINE T rotated_boxes_intersection(
    const RotatedBox<T>& box1,
    const RotatedBox<T>& box2) {
  // There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
  // from rotated_rect_intersection_pts
  Point<T> intersectPts[24], orderedPts[24];

  Point<T> pts1[4];
  Point<T> pts2[4];
  get_rotated_vertices<T>(box1, pts1);
  get_rotated_vertices<T>(box2, pts2);

  int num = get_intersection_points<T>(pts1, pts2, intersectPts);

  if (num <= 2) {
    return 0.0;
  }

  // Convex Hull to order the intersection points in clockwise order and find
  // the contour area.
  int num_convex = convex_hull_graham<T>(intersectPts, num, orderedPts, true);
  return polygon_area<T>(orderedPts, num_convex);
}

} // namespace

template <typename T>
HOST_DEVICE_INLINE T
single_box_iou_rotated(T const* const box1_raw, T const* const box2_raw) {
  // shift center to the middle point to achieve higher precision in result
  RotatedBox<T> box1, box2;
  auto center_shift_x = (box1_raw[0] + box2_raw[0]) / 2.0;
  auto center_shift_y = (box1_raw[1] + box2_raw[1]) / 2.0;
  box1.x_ctr = box1_raw[0] - center_shift_x;
  box1.y_ctr = box1_raw[1] - center_shift_y;
  box1.w = box1_raw[2];
  box1.h = box1_raw[3];
  box1.a = box1_raw[4];
  box2.x_ctr = box2_raw[0] - center_shift_x;
  box2.y_ctr = box2_raw[1] - center_shift_y;
  box2.w = box2_raw[2];
  box2.h = box2_raw[3];
  box2.a = box2_raw[4];

  T area1 = box1.w * box1.h;
  T area2 = box2.w * box2.h;
  if (area1 < 1e-14 || area2 < 1e-14) {
    return 0.f;
  }

  T intersection = rotated_boxes_intersection<T>(box1, box2);
  T iou = intersection / (area1 + area2 - intersection);
  return iou;
}

} // namespace detectron2