File size: 10,281 Bytes
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from collections import OrderedDict
from typing import Tuple, Union
import logging
import os

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn

from timm.models.layers import DropPath, trunc_normal_
from .backbone import Backbone
from .build import BACKBONE_REGISTRY
from .det_swin import SwinTransformer
from ..text_encoder import build_text_encoder
from ..text_encoder import build_tokenizer

class LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12):
        """Construct a layernorm module in the TF style (epsilon inside the square root).
        """
        super(LayerNorm, self).__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        pdtype = x.dtype
        x = x.float()
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.weight * x.to(pdtype) + self.bias


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self,
                 d_model: int,
                 n_head: int,
                 attn_mask: torch.Tensor = None,
                 drop_path: float = 0.0):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def attention(self, x: torch.Tensor):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \
            if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x: torch.Tensor):
        x = x + self.drop_path(self.attention(self.ln_1(x)))
        x = x + self.drop_path(self.mlp(self.ln_2(x)))
        return x


class Transformer(nn.Module):
    def __init__(self,
                 context_length: int,
                 vocab_size: int,
                 width: int,
                 layers: int,
                 heads: int,
                 drop_path: float = 0.0):
        super().__init__()

        self.token_embedding = nn.Embedding(vocab_size, width)

        self.context_length = context_length
        self.positional_embedding = nn.Parameter(
            torch.empty(self.context_length, width)
        )

        self.width = width
        self.layers = layers
        attn_mask = self.build_attention_mask()
        dpr = [x.item() for x in torch.linspace(0, drop_path, layers)]  # stochastic depth decay rule
        self.resblocks = nn.Sequential(
            *[
                ResidualAttentionBlock(width, heads, attn_mask, dpr[i])
                for i in range(layers)
            ]
        )

        self.ln_final = LayerNorm(width)

        trunc_normal_(self.positional_embedding, std=.02)
        # nn.init.normal_(self.token_embedding, std=.02)
        trunc_normal_(self.token_embedding.weight, std=.02)
        self.apply(self._init_weights)

    def build_attention_mask(self):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    def _init_weights(self, m):
        if isinstance(m, (nn.Linear, nn.Conv2d)):
            trunc_normal_(m.weight, std=0.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
            nn.init.constant_(m.bias, 0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
            'positional_embedding',
            'token_embedding',
        }

    def forward(self, text: torch.Tensor):
        x = self.token_embedding(text)  # [batch_size, n_ctx, d_model]
        x = x + self.positional_embedding
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.resblocks(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        x = self.ln_final(x)

        x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]

        return x

class CLIP(Backbone):
    def __init__(self, config: dict):
        super().__init__()
        spec_text = config['MODEL']['SPEC']['TEXT']
        assert spec_text['TOKENIZER'] == 'clip', 'Only support clip tokenizer'
        self.tokenizer_style = spec_text['TOKENIZER']
        self.tokenizer = build_tokenizer(spec_text)

        self.text_encoder = build_text_encoder(spec_text, self.tokenizer, True)

        embed_dim = config['MODEL']['SPEC']['EMBED_DIM']
        self.text_projection = nn.Parameter(
            torch.empty(spec_text['WIDTH'], embed_dim)
        )

        spec_vision = config['MODEL']['SPEC']['VISION']
        self.image_encoder = SwinTransformer(
            patch_size=spec_vision['PATCH_SIZE'],
            in_chans=spec_vision['IN_CHANS'],
            embed_dim=spec_vision['EMBED_DIM'],
            depths=spec_vision['DEPTHS'],
            num_heads=spec_vision['NUM_HEADS'],
            window_size=spec_vision['WINDOW_SIZE'],
            mlp_ratio=spec_vision['MLP_RATIO'],
            qkv_bias=spec_vision['QKV_BIAS'],
            qk_scale=spec_vision.get('QK_SCALE', None),
            drop_rate=spec_vision['DROP_RATE'],
            attn_drop_rate=spec_vision['ATTN_DROP_RATE'],
            drop_path_rate=spec_vision['DROP_PATH_RATE'],            
            ape=spec_vision['APE'],
            patch_norm=spec_vision['PATCH_NORM'],
            out_indices=(0, 1, 2, 3),
            frozen_stages=-1,
            use_checkpoint=False,            
        )

        width = spec_vision['EMBED_DIM'] * 2 ** (len(spec_vision['DEPTHS']) - 1)
        self.image_projection = nn.Parameter(
            torch.empty(width, embed_dim)
        )
        # self.logit_scale = nn.Parameter(torch.FloatTensor([np.log(1 / 0.07)]))
        self.logit_scale = nn.Parameter(torch.ones([]))

        trunc_normal_(self.text_projection, std=.02)
        trunc_normal_(self.image_projection, std=.02)

    def init_weights(self, pretrained='', pretrained_layers=[], verbose=True):
        if os.path.isfile(pretrained):
            pretrained_dict = torch.load(pretrained, map_location='cpu')
            logger.info(f'=> loading pretrained model {pretrained}')
            model_dict = self.state_dict()
            pretrained_dict = {
                k: v for k, v in pretrained_dict.items()
                if k in model_dict.keys()
            }
            need_init_state_dict = {}
            for k, v in pretrained_dict.items():
                need_init = (
                        k.split('.')[0] in pretrained_layers
                        or pretrained_layers[0] is '*'
                )
                if need_init:
                    if verbose:
                        logging.info(f'=> init {k} from {pretrained}')
                    need_init_state_dict[k] = v
            self.load_state_dict(need_init_state_dict, strict=False)

    @torch.jit.ignore
    def no_weight_decay(self):
        no_weight_decay = {'logit_scale'}
        for k in self.text_encoder.no_weight_decay():
            no_weight_decay.add('text.'+k)

        for k in self.image_encoder.no_weight_decay():
            no_weight_decay.add('visual.'+k)

        return no_weight_decay

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    @property
    def dtype(self):
        return self.image_encoder.conv1.weight.dtype

    def encode_image(self, image, norm=True):
        x = self.image_encoder(image)
        return x

    def encode_text(self, text, norm=True):   
        assert isinstance(text, str), "only support single query"
        tokens = self.tokenizer(
            text, padding='max_length', truncation=True, max_length=77, return_tensors='pt'
        )                
        tokens = {key:(val.cuda() if next(self.parameters()).is_cuda else val) for key,val in tokens.items()}
        x = self.text_encoder(**tokens)
        x = x['last_hidden_state']
        x = x[torch.arange(x.size(0)), tokens['input_ids'].argmax(dim=-1)]

        x = x @ self.text_projection
        if norm:
            x = x / x.norm(dim=-1, keepdim=True)
        return x

    def forward(self, image):
        features_image = self.image_encoder(image)
        return features_image


@BACKBONE_REGISTRY.register()
def build_clip_swin_backbone(cfg, input_shape):
    """
    Create a CLIP Swin instance from config.

    Returns:
        SwinTransformer: a :class:`SwinTransformer` instance.
    """    
    spec_vision = cfg.MODEL.CLIP.VISION
    return SwinTransformer(
            patch_size=spec_vision['PATCH_SIZE'],
            in_chans=spec_vision['IN_CHANS'],
            embed_dim=spec_vision['EMBED_DIM'],
            depths=spec_vision['DEPTHS'],
            num_heads=spec_vision['NUM_HEADS'],
            window_size=spec_vision['WINDOW_SIZE'],
            mlp_ratio=spec_vision['MLP_RATIO'],
            qkv_bias=spec_vision['QKV_BIAS'],
            qk_scale=spec_vision.get('QK_SCALE', None),
            drop_rate=spec_vision['DROP_RATE'],
            attn_drop_rate=spec_vision['ATTN_DROP_RATE'],
            drop_path_rate=spec_vision['DROP_PATH_RATE'],
            ape=spec_vision['APE'],
            patch_norm=spec_vision['PATCH_NORM'],
            out_indices=(0, 1, 2, 3),
            frozen_stages=-1,
            use_checkpoint=False,
        )

@BACKBONE_REGISTRY.register()
def build_clip_swin(cfg, input_shape):
    """
    Create a CLIP Swin instance from config.

    Returns:
        SwinTransformer: a :class:`SwinTransformer` instance.
    """    
    return CLIP(cfg)