Spaces:
Runtime error
Runtime error
File size: 7,339 Bytes
4121bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import bisect
import copy
import logging
import os
import torch
import torch.utils.data
import torch.distributed
from torch.utils.data.dataset import ConcatDataset
from .catalog import DatasetCatalog
from .clip_datasets.clip_img_txt_pair_tsv import CLIPImgTxtPairTSVDataset
from .transforms.build import build_clip_transforms
def config_tsv_dataset_args(cfg, dataset_file, factory_name=None, is_train=True):
############### code removecd as tsv_dataset_name = factory_name = "CLIPImgTxtPairTSVDataset" ##############
if factory_name is not None:
tsv_dataset_name = factory_name
if tsv_dataset_name in ["CLIPImgTxtPairTSVDataset"]:
# no need for extra arguments
args = {}
args['args'] = cfg
args['seq_len'] = cfg.DATASETS.MAX_SEQ_LENGTH # cfg.max_seq_length
return args, tsv_dataset_name
def build_dataset(cfg, transforms, dataset_catalog, is_train=True, is_aux=False):
"""
Arguments:
cfg: config file.
transforms (callable): transforms to apply to each (image, target) sample
dataset_catalog (DatasetCatalog): contains the information on how to construct a dataset.
is_train (bool): whether to setup the dataset for training or testing
"""
dataset_list = (cfg.DATASETS.TRAIN if not is_aux else cfg.DATASETS.AUX) if is_train else cfg.DATASETS.TEST
factory_list = (cfg.DATASETS.FACTORY_TRAIN if not is_aux else cfg.DATASETS.FACTORY_AUX) if is_train else cfg.DATASETS.FACTORY_TEST
path_list = (cfg.DATASETS.PATH_TRAIN if not is_aux else cfg.DATASETS.PATH_AUX) if is_train else cfg.DATASETS.PATH_TEST
if not isinstance(dataset_list, (list, tuple)):
raise RuntimeError(
"dataset_list should be a list of strings, got {}".format(dataset_list))
if not isinstance(factory_list, (list, tuple)):
raise RuntimeError(
"factory_list should be a list of strings, got {}".format(factory_list))
datasets = []
target_offset = 0
for i, dataset_name in enumerate(dataset_list):
factory_name = factory_list[i] if i < len(factory_list) else None
if factory_name == "CLIPImgTxtPairTSVDataset":
dataset_names_merged = dataset_name.split('+')
path_lists_merged = path_list[i].split('+')
assert len(dataset_names_merged) == len(path_lists_merged), "number of datasets must match that of dataset paths"
image_tsv_list = []
text_tsv_list = []
dataset_name_list = []
map_files = []
max_num_tsv = 20 # maximum tsv files to load within a given folder
for dname, dpath in zip(dataset_names_merged, path_lists_merged):
args, tsv_dataset_name = config_tsv_dataset_args(
cfg, dataset_name, factory_name, is_train
)
factory = CLIPImgTxtPairTSVDataset if tsv_dataset_name in ["CLIPImgTxtPairTSVDataset"] else None
prev_len = len(image_tsv_list)
isFile = os.path.isfile(dpath)
if isFile:
dpath_listed_files = [os.path.basename(dpath)]
dpath = os.path.dirname(dpath)
else:
dpath_listed_files = sorted(os.listdir(dpath))
for filename in dpath_listed_files:
if ("images" in filename or "image" in filename or "img" in filename) and filename.endswith(".tsv"):
image_tsv_list.append(os.path.join(dpath, filename))
if "images" in filename: # "images" - "text"
text_tsv_list.append(os.path.join(dpath, filename.replace("images", "text")))
elif "image" in filename: # "image"-"text"
text_tsv_list.append(os.path.join(dpath, filename.replace("image", "text")))
elif "img" in filename: # "img"-"caption"
text_tsv_list.append(os.path.join(dpath, filename.replace("img", "caption")))
if len(image_tsv_list) - prev_len == max_num_tsv:
break
dataset_name_list += [dname] * (len(image_tsv_list) - prev_len)
if dname == "imagenet22k":
map_files += [os.path.join(dpath, 'darknet_data_imagenet.labels.list')] * (len(image_tsv_list) - prev_len)
else:
map_files += [None] * (len(image_tsv_list) - prev_len)
assert len(image_tsv_list) == len(text_tsv_list), \
"the number image tsv files must be equal to that of text tsv files, otherwise check your data!"
args["image_tsv_file"] = image_tsv_list
args["text_tsv_file"] = text_tsv_list
args["dataset_name"] = dataset_name_list
args["map_file"] = map_files
args["filtered_datasets"] = cfg.DATASETS.FILTERED_CLASSIFICATION_DATASETS
assert len(image_tsv_list) == len(text_tsv_list) == len(dataset_name_list) == len(map_files)
print("number of image tsv files: ", len(image_tsv_list))
print("number of text tsv fies: ", len(text_tsv_list))
args["is_train"] = is_train
args["transforms"] = transforms
args["target_offset"] = target_offset
if "bpe" in cfg.INPUT.TEXT_TOKENIZER:
from detectron2.data.datasets.clip_prompt_utils import SimpleTokenizer as _Tokenizer
tokenizer = _Tokenizer()
args["tokenizer_type"] = "bpe"
args["tokenizer"] = tokenizer
# make dataset from factory
dataset = factory(**args)
datasets.append(dataset)
precomputed_tokens = {}
dataset_classes = {}
for dataset in datasets:
if hasattr(dataset, "input_ids_all_classes"):
precomputed_tokens["imagenet"] = \
[dataset.input_ids_all_classes, dataset.input_mask_all_classes, dataset.segment_ids_all_classes]
if hasattr(dataset, "classnames"):
if isinstance(dataset.classnames, dict):
dataset_classes.update(dataset.classnames)
else:
dataset_classes[dataset.dataset_name] = dataset.classnames
# for testing, return a list of datasets
if not is_train:
return datasets, precomputed_tokens, dataset_classes
if len(datasets) == 0:
return None, None, None
# for training, concatenate all datasets into a single one
dataset = datasets[0]
if len(datasets) > 1:
dataset = ConcatDataset(datasets)
return [dataset], precomputed_tokens, dataset_classes
def make_clip_dataset(cfg, is_train=True, is_aux=False, transforms=None):
if transforms is None:
transforms = build_clip_transforms(cfg, is_train)
print("data transforms: ")
print(transforms)
datasets, precomputed_tokens, dataset_classes = build_dataset(cfg, transforms, DatasetCatalog, is_train, is_aux)
if not datasets:
return None, None, None
return datasets, precomputed_tokens, dataset_classes |