File size: 10,318 Bytes
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92144aa
 
 
4121bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import gzip
import html
import os
from functools import lru_cache

import ftfy
import regex as re
import torch
import numpy as np
from typing import Union, List

# https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py
@lru_cache()
def default_bpe():
    return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")


@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))


def get_pairs(word):
    """Return set of symbol pairs in a word.
    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs


def basic_clean(text):
    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()


def whitespace_clean(text):
    text = re.sub(r'\s+', ' ', text)
    text = text.strip()
    return text


class SimpleTokenizer(object):
    def __init__(self, bpe_path: str = default_bpe()):
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
        merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
        merges = merges[1:49152-256-2+1]
        merges = [tuple(merge.split()) for merge in merges]
        vocab = list(bytes_to_unicode().values())
        vocab = vocab + [v+'</w>' for v in vocab]
        self.vocab = vocab
        for merge in merges:
            vocab.append(''.join(merge))
        vocab.extend(['<|startoftext|>', '<|endoftext|>'])
        self.encoder = dict(zip(vocab, range(len(vocab))))
        self.decoder = {v: k for k, v in self.encoder.items()}
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
        self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token[:-1]) + ( token[-1] + '</w>',)
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

    def encode(self, text):
        bpe_tokens = []
        text = whitespace_clean(basic_clean(text)).lower()
        for token in re.findall(self.pat, text):
            token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
            bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

    def decode(self, tokens):
        text = ''.join([self.decoder[token] for token in tokens])
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
        return text


# https://github.com/openai/CLIP/blob/main/clip/clip.py
#_tokenizer = SimpleTokenizer()

def tokenize(texts: Union[str, List[str]], context_length: int = 77):
    if isinstance(texts, str):
        texts = [texts]

    sot_token = _tokenizer.encoder["<|startoftext|>"]
    eot_token = _tokenizer.encoder["<|endoftext|>"]
    all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
    result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)

    for i, tokens in enumerate(all_tokens):
        if len(tokens) > context_length:
            raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
        result[i, :len(tokens)] = torch.tensor(tokens)

    return result


# prompt_engineering.py
def get_prompt_templates():
    # prompt_templates = [
    #     'There is a {} in the scene.',
    #     'There is the {} in the scene.',
    #     'a photo of a {} in the scene.',
    #     'a photo of the {} in the scene.',
    #     'a photo of one {} in the scene.',

    #     'itap of a {}.',
    #     'itap of my {}.',  # itap: I took a picture of
    #     'itap of the {}.',
    #     'a photo of a {}.',
    #     'a photo of my {}.',
    #     'a photo of the {}.',
    #     'a photo of one {}.',
    #     'a photo of many {}.',

    #     'a good photo of a {}.',
    #     'a good photo of the {}.',
    #     'a bad photo of a {}.',
    #     'a bad photo of the {}.',
    #     'a photo of a nice {}.',
    #     'a photo of the nice {}.',
    #     'a photo of a cool {}.',
    #     'a photo of the cool {}.',
    #     'a photo of a weird {}.',
    #     'a photo of the weird {}.',

    #     'a photo of a small {}.',
    #     'a photo of the small {}.',
    #     'a photo of a large {}.',
    #     'a photo of the large {}.',

    #     'a photo of a clean {}.',
    #     'a photo of the clean {}.',
    #     'a photo of a dirty {}.',
    #     'a photo of the dirty {}.',

    #     'a bright photo of a {}.',
    #     'a bright photo of the {}.',
    #     'a dark photo of a {}.',
    #     'a dark photo of the {}.',

    #     'a photo of a hard to see {}.',
    #     'a photo of the hard to see {}.',
    #     'a low resolution photo of a {}.',
    #     'a low resolution photo of the {}.',
    #     'a cropped photo of a {}.',
    #     'a cropped photo of the {}.',
    #     'a close-up photo of a {}.',
    #     'a close-up photo of the {}.',
    #     'a jpeg corrupted photo of a {}.',
    #     'a jpeg corrupted photo of the {}.',
    #     'a blurry photo of a {}.',
    #     'a blurry photo of the {}.',
    #     'a pixelated photo of a {}.',
    #     'a pixelated photo of the {}.',

    #     'a black and white photo of the {}.',
    #     'a black and white photo of a {}.',

    #     'a plastic {}.',
    #     'the plastic {}.',

    #     'a toy {}.',
    #     'the toy {}.',
    #     'a plushie {}.',
    #     'the plushie {}.',
    #     'a cartoon {}.',
    #     'the cartoon {}.',

    #     'an embroidered {}.',
    #     'the embroidered {}.',

    #     'a painting of the {}.',
    #     'a painting of a {}.',
    # ]
    
    prompt_templates = ['{}.', 'a photo of the large {}.',  'a photo of the small {}.',  'a bad photo of the {}.', 'itap of the {}.',  'a origami {}.', 'a {} in a video game.', 'art of the {}.']
    
    return prompt_templates

def prompt_engineering(classnames, template=""):
    return template.replace('{}', classnames.replace(',', '').replace('+', ' '))

# clip_img_tsv.py
def convert_example_to_features_bpe(text, tokenizer, sot_token, eot_token, context_length=77):
    """
    Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample.
    :param tokenizer: Tokenizer
    :return: List, a list containing token id, padded by 0
    """
    assert isinstance(text, str)
    input_ids = [sot_token] + tokenizer.encode(text) + [eot_token]
    if len(input_ids) > context_length:
        input_ids = input_ids[:context_length]
    input_ids = np.array(input_ids)

    pad_input_ids = np.zeros(context_length)
    pad_input_ids[:input_ids.shape[0]] = input_ids

    return pad_input_ids

def pre_tokenize(class_names):
    """
    pre-tokenize class names
    :param class_names: List, a list of class names
    :param tokenizer: Tokenizer, SimpleTokenizer()
    :return: Tensor, containing all prompts for all classes, [#cls, #prompts, context_length]
    """
    # tokenizer
    tokenizer = SimpleTokenizer()
    sot_token = tokenizer.encoder["<|startoftext|>"]
    eot_token = tokenizer.encoder["<|endoftext|>"]    

    # prompt engineering
    prompt_templates = get_prompt_templates()
    input_ids_all = []
    for k in range(len(class_names)):
        v = class_names[k]
        if isinstance(v, str):
            vs = [v]
        elif isinstance(v, list):
            vs = v
        t1s = []
        for v in vs:
            for pt in prompt_templates:
                t1s.append(prompt_engineering(v, template=pt))
        input_ids = []
        for t1 in t1s:
            this_input_ids = convert_example_to_features_bpe(t1, tokenizer, sot_token, eot_token)                                                        
            input_ids.append(torch.tensor(this_input_ids, dtype=torch.long))

        input_ids_all.append(torch.stack(input_ids, 0))

    input_ids_all_classes = torch.stack(input_ids_all, 0)
    return input_ids_all_classes


if __name__ == "__main__":
    flatten_input_ids = pre_tokenize()