Spaces:
Runtime error
Runtime error
File size: 10,318 Bytes
4121bec 92144aa 4121bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import gzip
import html
import os
from functools import lru_cache
import ftfy
import regex as re
import torch
import numpy as np
from typing import Union, List
# https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py
@lru_cache()
def default_bpe():
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text
class SimpleTokenizer(object):
def __init__(self, bpe_path: str = default_bpe()):
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
merges = merges[1:49152-256-2+1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v+'</w>' for v in vocab]
self.vocab = vocab
for merge in merges:
vocab.append(''.join(merge))
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
self.encoder = dict(zip(vocab, range(len(vocab))))
self.decoder = {v: k for k, v in self.encoder.items()}
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
pairs = get_pairs(word)
if not pairs:
return token+'</w>'
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = whitespace_clean(basic_clean(text)).lower()
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
return bpe_tokens
def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
return text
# https://github.com/openai/CLIP/blob/main/clip/clip.py
#_tokenizer = SimpleTokenizer()
def tokenize(texts: Union[str, List[str]], context_length: int = 77):
if isinstance(texts, str):
texts = [texts]
sot_token = _tokenizer.encoder["<|startoftext|>"]
eot_token = _tokenizer.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
result[i, :len(tokens)] = torch.tensor(tokens)
return result
# prompt_engineering.py
def get_prompt_templates():
# prompt_templates = [
# 'There is a {} in the scene.',
# 'There is the {} in the scene.',
# 'a photo of a {} in the scene.',
# 'a photo of the {} in the scene.',
# 'a photo of one {} in the scene.',
# 'itap of a {}.',
# 'itap of my {}.', # itap: I took a picture of
# 'itap of the {}.',
# 'a photo of a {}.',
# 'a photo of my {}.',
# 'a photo of the {}.',
# 'a photo of one {}.',
# 'a photo of many {}.',
# 'a good photo of a {}.',
# 'a good photo of the {}.',
# 'a bad photo of a {}.',
# 'a bad photo of the {}.',
# 'a photo of a nice {}.',
# 'a photo of the nice {}.',
# 'a photo of a cool {}.',
# 'a photo of the cool {}.',
# 'a photo of a weird {}.',
# 'a photo of the weird {}.',
# 'a photo of a small {}.',
# 'a photo of the small {}.',
# 'a photo of a large {}.',
# 'a photo of the large {}.',
# 'a photo of a clean {}.',
# 'a photo of the clean {}.',
# 'a photo of a dirty {}.',
# 'a photo of the dirty {}.',
# 'a bright photo of a {}.',
# 'a bright photo of the {}.',
# 'a dark photo of a {}.',
# 'a dark photo of the {}.',
# 'a photo of a hard to see {}.',
# 'a photo of the hard to see {}.',
# 'a low resolution photo of a {}.',
# 'a low resolution photo of the {}.',
# 'a cropped photo of a {}.',
# 'a cropped photo of the {}.',
# 'a close-up photo of a {}.',
# 'a close-up photo of the {}.',
# 'a jpeg corrupted photo of a {}.',
# 'a jpeg corrupted photo of the {}.',
# 'a blurry photo of a {}.',
# 'a blurry photo of the {}.',
# 'a pixelated photo of a {}.',
# 'a pixelated photo of the {}.',
# 'a black and white photo of the {}.',
# 'a black and white photo of a {}.',
# 'a plastic {}.',
# 'the plastic {}.',
# 'a toy {}.',
# 'the toy {}.',
# 'a plushie {}.',
# 'the plushie {}.',
# 'a cartoon {}.',
# 'the cartoon {}.',
# 'an embroidered {}.',
# 'the embroidered {}.',
# 'a painting of the {}.',
# 'a painting of a {}.',
# ]
prompt_templates = ['{}.', 'a photo of the large {}.', 'a photo of the small {}.', 'a bad photo of the {}.', 'itap of the {}.', 'a origami {}.', 'a {} in a video game.', 'art of the {}.']
return prompt_templates
def prompt_engineering(classnames, template=""):
return template.replace('{}', classnames.replace(',', '').replace('+', ' '))
# clip_img_tsv.py
def convert_example_to_features_bpe(text, tokenizer, sot_token, eot_token, context_length=77):
"""
Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample.
:param tokenizer: Tokenizer
:return: List, a list containing token id, padded by 0
"""
assert isinstance(text, str)
input_ids = [sot_token] + tokenizer.encode(text) + [eot_token]
if len(input_ids) > context_length:
input_ids = input_ids[:context_length]
input_ids = np.array(input_ids)
pad_input_ids = np.zeros(context_length)
pad_input_ids[:input_ids.shape[0]] = input_ids
return pad_input_ids
def pre_tokenize(class_names):
"""
pre-tokenize class names
:param class_names: List, a list of class names
:param tokenizer: Tokenizer, SimpleTokenizer()
:return: Tensor, containing all prompts for all classes, [#cls, #prompts, context_length]
"""
# tokenizer
tokenizer = SimpleTokenizer()
sot_token = tokenizer.encoder["<|startoftext|>"]
eot_token = tokenizer.encoder["<|endoftext|>"]
# prompt engineering
prompt_templates = get_prompt_templates()
input_ids_all = []
for k in range(len(class_names)):
v = class_names[k]
if isinstance(v, str):
vs = [v]
elif isinstance(v, list):
vs = v
t1s = []
for v in vs:
for pt in prompt_templates:
t1s.append(prompt_engineering(v, template=pt))
input_ids = []
for t1 in t1s:
this_input_ids = convert_example_to_features_bpe(t1, tokenizer, sot_token, eot_token)
input_ids.append(torch.tensor(this_input_ids, dtype=torch.long))
input_ids_all.append(torch.stack(input_ids, 0))
input_ids_all_classes = torch.stack(input_ids_all, 0)
return input_ids_all_classes
if __name__ == "__main__":
flatten_input_ids = pre_tokenize()
|