Spaces:
Runtime error
Runtime error
File size: 25,879 Bytes
4121bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from io import BytesIO
import json
import logging
import base64
import threading
import random
import numpy as np
from typing import Callable, List, Tuple, Union
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import torch
import torch.utils.data as data
from .oscar_tsv import InputExample, convert_example_to_features
from detectron2.structures.tsv_file import TSVFile, CompositeTSVFile
from detectron2.data.clip_datasets.clip_prompt_engineering import get_prompt_templates, prompt_engineering
#import spacy
def pre_fetch(tsv_filename: str):
logging.info('Pre-loading %s ...' % tsv_filename)
with open(tsv_filename, 'r'):
logging.info('Pre-loading %s ended.' % tsv_filename)
class CLIPImgTxtPairTSVDataset(data.Dataset):
"""
This class is intended for encapsulating Image/Text pair data for contrastive learning described in
the following paper,
"Learning Transferable Visual Models From Natural Language Supervision" (a.k.a CLIP)
Specifically, it is used to accomadate the tsv data format from Azure Cognition Service Group.
"""
def __init__(self,
image_tsv_file: Union[str, List[str]],
text_tsv_file: Union[str, List[str]],
transforms: Callable = None,
tokenizer: Callable = None,
seq_len = 0, context_length = 77, target_offset=0,
args = None,
dataset_name = "",
tokenizer_type = "bert",
is_train = True,
map_file = None,
filtered_datasets = ''):
self.args = args
self.is_train = is_train
self.dataset_names = dataset_name
self.tokenizer_type = tokenizer_type
self.target_offset = target_offset
self.seq_len = seq_len
self.transforms = transforms
self.tokenizer = tokenizer
self._chunk_sizes = None
self.context_length = context_length
self.prompt_templates = get_prompt_templates() # [:2]
self.spacy_nlp = None # spacy.load('en_core_web_sm')
self.class_selector = None
# self.class_selector = list(self.label2idx.keys()) if self.label2idx else None
self.label2idx = {}
self.idx2label = {}
self.classnames = {}
self.dataset_target_offsets = {}; offset = 0
self.num_classes = sum([len(val) for val in self.classnames.values()])
self.filtered_classnames = []
if isinstance(image_tsv_file, str) and isinstance(text_tsv_file, str):
# single tsv file
if (
os.path.splitext(image_tsv_file)[1].lower() == '.tsv'
and os.path.splitext(text_tsv_file)[1].lower() == '.tsv'
):
self.image_tsv_file = TSVFile(image_tsv_file, if_generate_lineidx=True)
self.text_tsv_file = TSVFile(text_tsv_file, if_generate_lineidx=True)
# multiple tsv files specified in a text file
elif (
os.path.splitext(image_tsv_file)[1].lower() == '.txt'
and os.path.splitext(text_tsv_file)[1].lower() == '.txt'
):
self.image_tsv_file = CompositeTSVFile(image_tsv_file)
self.text_tsv_file = CompositeTSVFile(text_tsv_file)
self._chunk_sizes = self.image_tsv_file.get_chunk_size()
else:
raise ValueError("Invalid input! Please check the tsv filenames.")
# multiple tsv files specified in a list
elif (
isinstance(image_tsv_file, list)
and isinstance(text_tsv_file, list)
):
assert len(image_tsv_file) == len(text_tsv_file), \
"Inconsistent number of Image/Text tsv files!"
assert len(image_tsv_file) == len(text_tsv_file), \
"Inconsistent number of Image/Text tsv files!"
self.image_tsv_path = image_tsv_file
self.text_tsv_path = text_tsv_file
self.image_tsv_file = CompositeTSVFile(image_tsv_file, class_selector=self.class_selector)
self.text_tsv_file = CompositeTSVFile(text_tsv_file, class_selector=self.class_selector)
self._chunk_sizes = self.image_tsv_file.get_chunk_size()
self._accumulated_chunk_sizes = np.cumsum(self._chunk_sizes).tolist()
else:
raise ValueError("Invalid input! Please check the tsv filenames.")
assert len(self.image_tsv_file) == len(self.text_tsv_file), \
"Inconsistent size of Image/Text ({}/{}) data!".format(
len(self.image_tsv_file), len(self.text_tsv_file)
)
def get_chunk_sizes(self):
return self._chunk_sizes
def get_class_boundaries(self):
# The samples of each class are organized class-by-class.
# _class_boundaries stores the lower- and upper-bound of each class.
return self.image_tsv_file.get_class_boundaries()
def _load_map(self, map_file: str):
if not map_file:
return None
label2idx = {}
with open(map_file) as f:
for line in f:
items = line.strip().split('\t')
label2idx[items[0]] = int(items[1])
return label2idx
def _load_darknet_map(self, map_file):
if not map_file:
return None
label2idx = {}
with open(map_file) as f:
linenum = 0
for l in f:
item = l.strip()
label2idx[item] = linenum
linenum += 1
return label2idx
def _pre_tokenize(self):
"""
pre-tokenize class names
"""
input_ids_all = []
input_masks_all = []
segment_ids_all = []
for k in range(len(self.classnames["imagenet"])):
cur_id = 0; img_id = 0
scale = 1.0
v = self.classnames["imagenet"].label_to_name(k)
if isinstance(v, str):
vs = [v]
elif isinstance(v, list):
vs = v
t1s = []
t2s = []
for v in vs:
for pt in self.prompt_templates:
t1s.append(prompt_engineering(v, template=pt))
t2s.append("")
input_ids = []
input_masks = []
segment_ids = []
is_next_labels = [0] * len(t1s)
is_img_matchs = [1] * len(t1s)
img_feat_len = 0
for t1, t2, is_next_label, is_img_match in zip(t1s, t2s, is_next_labels, is_img_matchs):
if self.tokenizer_type == "bert":
# tokenize
tokens_a = self.tokenizer.tokenize(t1)
tokens_b = None
# combine to one sample
cur_example = InputExample(guid=cur_id, tokens_a=tokens_a,
tokens_b=tokens_b, is_next=is_next_label,
img_id=img_id, is_img_match=is_img_match)
# transform sample to features
cur_features = convert_example_to_features(self.args, cur_example,
self.seq_len, self.tokenizer,
img_feat_len)
input_ids.append(torch.tensor(cur_features.input_ids, dtype=torch.long))
input_masks.append(torch.tensor(cur_features.input_mask, dtype=torch.long))
segment_ids.append(torch.tensor(cur_features.segment_ids, dtype=torch.long))
elif self.tokenizer_type == "bpe":
tokens_a = t1; tokens_b = None
# combine to one sample
cur_example = InputExample(guid=cur_id, tokens_a=tokens_a,
tokens_b=tokens_b, is_next=is_next_label,
img_id=img_id, is_img_match=is_img_match)
# transform sample to features
cur_features = convert_example_to_features_bpe(self.args, cur_example,
self.seq_len, self.tokenizer,
img_feat_len)
input_ids.append(torch.tensor(cur_features.input_ids, dtype=torch.long))
input_masks.append(torch.tensor(cur_features.input_mask, dtype=torch.long))
segment_ids.append(torch.tensor(cur_features.segment_ids, dtype=torch.long))
else:
raise NotImplementedError
input_ids_all.append(torch.stack(input_ids, 0))
input_masks_all.append(torch.stack(input_masks, 0))
segment_ids_all.append(torch.stack(segment_ids, 0))
self.input_ids_all_classes = torch.stack(input_ids_all, 0)
self.input_mask_all_classes = torch.stack(input_masks_all, 0)
self.segment_ids_all_classes = torch.stack(segment_ids_all, 0)
def _online_tokenize(self, text):
# random select a prompt template
temp_idx = np.random.randint(len(self.prompt_templates))
pt = self.prompt_templates[temp_idx]
names = text.split(";")
num_names = np.random.randint(len(names)) + 1
names_sampled = random.sample(names, num_names)
text = ", ".join(names_sampled)
t1 = prompt_engineering(text, template=pt)
cur_id = 0; img_id = 0; scale = 1.0
is_next_label = 0; is_img_match = 1
img_feat_len = 0
if self.tokenizer_type == "bert":
# tokenize
tokens_a = self.tokenizer.tokenize(t1)
tokens_b = None
# combine to one sample
cur_example = InputExample(guid=cur_id, tokens_a=tokens_a,
tokens_b=tokens_b, is_next=is_next_label,
img_id=img_id, is_img_match=is_img_match)
# transform sample to features
cur_features = convert_example_to_features(self.args, cur_example,
self.context_length, self.tokenizer,
img_feat_len)
elif self.tokenizer_type == "bpe":
tokens_a = t1; tokens_b = None
# combine to one sample
cur_example = InputExample(guid=cur_id, tokens_a=tokens_a,
tokens_b=tokens_b, is_next=is_next_label,
img_id=img_id, is_img_match=is_img_match)
# transform sample to features
cur_features = convert_example_to_features_bpe(self.args, cur_example,
self.context_length, self.tokenizer,
img_feat_len)
return torch.tensor(cur_features.input_ids, dtype=torch.long), \
torch.tensor(cur_features.input_mask, dtype=torch.long), \
torch.tensor(cur_features.segment_ids, dtype=torch.long)
def get_dataset_name(self, index):
"""
get dataset name according to index
"""
assert index < self._accumulated_chunk_sizes[-1], "index must in the range of accumulated data size"
for k, boundary in enumerate(self._accumulated_chunk_sizes):
if index < boundary:
return self.dataset_names[k], k
def get_target_offset(self, dataset_name):
return self.dataset_target_offsets[dataset_name]
def get_img_label_pair(self, items_image, index):
dataset_name, chunk_id = self.get_dataset_name(index)
target_offset = self.get_target_offset(dataset_name)
_, target, img = self._decode_data(items_image, dataset_name)
if self.transforms:
img = self.transforms(img)
if target == -1:
input_ids, input_mask, segment_ids = \
self._online_tokenize("uncovered image")
else:
classname = self.classnames[dataset_name].labels2names[self.idx2label[dataset_name][target]]
if classname in self.filtered_classnames:
# we filter these classnames for training
target = -1
input_ids, input_mask, segment_ids = \
self._online_tokenize("uncovered image")
else:
input_ids, input_mask, segment_ids = \
self._online_tokenize(classname)
target += target_offset
return img, \
input_ids, \
input_mask, \
segment_ids, \
torch.LongTensor([target]), \
dataset_name
def get_img_txt_pair(self, items_image, items_text, index):
dataset_name, chunk_id = self.get_dataset_name(index)
assert items_text[0] == items_image[0], \
'keys do not match for image ({}) and text ({}) for {} at chunk {}-{}'.format(
len(items_text[0]), len(items_image[0]), dataset_name, chunk_id, self.image_tsv_path[chunk_id]
)
img = self._decode_image(items_image, dataset_name)
# print("index {}, chunk id {}, name {}".format(index, chunk_id, self.image_tsv_path[chunk_id]))
# raise TypeError("cannot decode current item")
img_width, img_height = img.size # img_height, img_width = np.array(img).shape
txts = self._decode_text(items_text)
if self.spacy_nlp is not None:
np_input_ids, np_input_masks, np_segment_ids = self.create_phrase_text(txts)
if self.transforms:
img = self.transforms(img)
if isinstance(txts, str):
input_ids, input_masks, segment_ids = \
convert_txt_to_tokens_bpe(txts, self.tokenizer, self.context_length)
all_str2id_links = []
elif isinstance(txts, list):
input_ids = []
input_masks = []
segment_ids = []
all_str2id_links = []
for txt in txts:
input_id, input_mask, segment_id, str2id_links = \
convert_txt_to_tokens_bpe(txt, self.tokenizer, self.context_length, return_link=True)
input_ids += input_id
input_masks += input_mask
segment_ids += segment_id
all_str2id_links += [str2id_links]
scale = 1.0
img_id = 0
if self.spacy_nlp is not None:
return img, \
torch.tensor(input_ids).long().view(-1), \
torch.tensor(input_masks).long().view(-1), \
torch.tensor(segment_ids).long().view(-1), \
torch.LongTensor([1e5]), \
dataset_name, \
torch.tensor(np_input_ids).long().view(-1), \
torch.tensor(np_input_masks).long().view(-1), \
torch.tensor(np_segment_ids).long().view(-1)
else:
return img, \
torch.tensor(input_ids).long().view(-1), \
torch.tensor(input_masks).long().view(-1), \
torch.tensor(segment_ids).long().view(-1), \
torch.LongTensor([1e5]), \
(dataset_name, items_text[0], (img_height, img_width), all_str2id_links) # dataset name, image id, image height&width, links bet string and tokenized texts
def create_phrase_text(self, txt_list):
""" Use NLP tool to detect noun phrases in captions, fill each identified phrase into a random prompt to create a sentence,
and convert each sentence to bpe tokens
"""
if isinstance(txt_list, str):
txt_list = [txt_list]
# detect noun phrase
noun_phrase = []
for txt in txt_list:
doc = self.spacy_nlp(txt.lower())
this_text = [nc.text for nc in doc.noun_chunks]
this_text = [nc.replace('a ', '').replace('the ', '') for nc in this_text]
noun_phrase.extend(this_text)
noun_phrase = list(set(noun_phrase))
# fill each phrase into a random prompt
text_list = []
pts = random.sample(self.prompt_templates, len(noun_phrase))
for i, np in enumerate(noun_phrase):
text_list.append(prompt_engineering(np, pts[i]))
# convert string into bpe tokens
input_ids = []
input_masks = []
segment_ids = []
for txt in text_list:
input_id, input_mask, segment_id = \
convert_txt_to_tokens_bpe(txt, self.tokenizer, self.context_length)
input_ids += input_id
input_masks += input_mask
segment_ids += segment_id
return input_ids, input_masks, segment_ids
def __getitem__(self, index: Union[int, Tuple[int, int]]):
if isinstance(index, tuple):
items_image = self.image_tsv_file[index[0]]
items_text = self.text_tsv_file[index[0]]
if index[1] >= 0:
tsv_filename = self.image_tsv_file.file_list[index[1]]
# Python threads are not truly parallel. Spawn a new process instead.
# logging.info('Pre-loading %s ...' % tsv_filename)
# os.system('cat ' + tsv_filename + ' > /dev/null &')
x = threading.Thread(
target=pre_fetch, args=(tsv_filename,), daemon=True
)
x.start()
curr_index = index[0]
else:
items_image = self.image_tsv_file[index]
items_text = self.text_tsv_file[index]
curr_index = index
# NOTE: since we duplicate image tsv to text tsv for image-label data,
# we can determine whether the current instance is an image-label pair or
# a image-text pair data based on whether items_image is identical to items_text or not.
if items_image == items_text:
return self.get_img_label_pair(items_image, curr_index)
else:
return self.get_img_txt_pair(items_image, items_text, curr_index)
def _decode_image(self, items: Tuple[str, str], dataset_name=""):
key = items[0]
image = Image.open(BytesIO(base64.b64decode(items[1]))).convert('RGB')
return image
def _decode_text(self, items: Tuple[str, Union[str, dict]]):
key = items[0]
text = ''
if isinstance(items[1], str):
try:
str_dict = json.loads(items[1])
# in this dict, it may contain either "tags" or "captions" or both
keys = [key for key in str_dict.keys()]
selected_key = random.sample(keys, 1)[0]
if selected_key == "captions":
# if this is a caption, we sample a caption
captions = str_dict[selected_key]
text = captions[:5]
# text = random.sample(captions, 1)[0]
elif selected_key == "tags":
# for tags, we randomly disorder it
tags = str_dict[selected_key]
tag_words = tags.split(' ')
random.shuffle(tag_words)
tags_shuffled = " ".join(tag_words)
# add prompt template
pt = random.sample(self.prompt_templates, 1)[0]
text = prompt_engineering(tags_shuffled, pt)
except:
text = items[1]
elif isinstance(items[1], dict):
assert 'captions' in items[1], '"captions" does not in {}'.format(items[1])
captions = items[1]['captions']
if isinstance(captions, list):
text = random.choice(captions)
elif isinstance(captions, str):
text = captions
else:
raise ValueError('captions should be str or list')
return text
def _decode_data(self, items, dataset_name):
key = items[0]
label = self._get_label(items[1], dataset_name)
try:
image = Image.open(BytesIO(base64.b64decode(items[2])))
except:
return None
return key, label, image.convert('RGB')
def _get_label(self, item, dataset_name):
if not self.label2idx[dataset_name]:
return int(item)
if item in self.label2idx[dataset_name]:
return self.label2idx[dataset_name][item]
label = json.loads(item)[0]['class']
if label in self.label2idx[dataset_name]:
return self.label2idx[dataset_name][label]
else:
return -1
def __len__(self):
return len(self.image_tsv_file)
def convert_txt_to_tokens_bpe(text, tokenizer, context_length, return_link=False):
sot_token = tokenizer.encoder["<|startoftext|>"]
eot_token = tokenizer.encoder["<|endoftext|>"]
if return_link:
bpe_tokens, str2id_links = tokenizer.encode(text, return_link=return_link)
str2id_links = [["<|startoftext|>", [sot_token]]] + str2id_links + [["<|endoftext|>", [eot_token]]]
else:
bpe_tokens = tokenizer.encode(text, return_link=return_link)
input_ids = [sot_token] + bpe_tokens + [eot_token]
if len(input_ids) > context_length:
input_ids = input_ids[:context_length]
segment_ids = [0] * len(input_ids)
lm_label_ids = [-1] * len(input_ids)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < context_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
lm_label_ids.append(-1)
assert len(input_ids) == context_length
assert len(input_mask) == context_length
assert len(segment_ids) == context_length
assert len(lm_label_ids) == context_length
if return_link:
return input_ids, input_mask, segment_ids, str2id_links
return input_ids, input_mask, segment_ids
def convert_example_to_features_bpe(args, example, max_seq_length, tokenizer,
img_feat_len, context_length=77):
"""
Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with
IDs, LM labels, input_mask, CLS and SEP tokens etc.
:param args: parameter settings
:param img_feat_len: lens of actual img features
:param example: InputExample, containing sentence input as strings and is_next label
:param max_seq_length: int, maximum length of sequence.
:param tokenizer: Tokenizer
:return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)
"""
# we do not consider tokens_b for now in original CLIP
text = example.tokens_a
assert isinstance(text, str)
sot_token = tokenizer.encoder["<|startoftext|>"]
eot_token = tokenizer.encoder["<|endoftext|>"]
input_ids = [sot_token] + tokenizer.encode(text) + [eot_token]
if len(input_ids) > context_length:
input_ids = input_ids[:context_length]
segment_ids = [0] * len(input_ids)
lm_label_ids = [-1] * len(input_ids)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < context_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
lm_label_ids.append(-1)
assert len(input_ids) == context_length
assert len(input_mask) == context_length
assert len(segment_ids) == context_length
assert len(lm_label_ids) == context_length
if example.guid < 1:
logging.info("*** Example ***")
logging.info("guid: %s" % example.guid)
logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logging.info("LM label: %s " % lm_label_ids)
logging.info("Is next sentence label: %s " % example.is_next)
features = InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
lm_label_ids=lm_label_ids,
is_next=example.is_next,
img_feat_len=img_feat_len,
is_img_match=example.is_img_match)
return features
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, is_next,
lm_label_ids, img_feat_len, is_img_match):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.is_next = is_next
self.lm_label_ids = lm_label_ids
self.img_feat_len = img_feat_len
self.is_img_match = is_img_match |