Spaces:
Runtime error
Runtime error
File size: 21,261 Bytes
4d85df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
"""
Most of the code is taken from https://github.com/andyzeng/tsdf-fusion-python/blob/master/fusion.py
@inproceedings{zeng20163dmatch,
title={3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions},
author={Zeng, Andy and Song, Shuran and Nie{\ss}ner, Matthias and Fisher, Matthew and Xiao, Jianxiong and Funkhouser, Thomas},
booktitle={CVPR},
year={2017}
}
"""
import numpy as np
from numba import njit, prange
from skimage import measure
FUSION_GPU_MODE = 0
class TSDFVolume:
"""Volumetric TSDF Fusion of RGB-D Images."""
def __init__(self, vol_bnds, voxel_size, use_gpu=True):
"""Constructor.
Args:
vol_bnds (ndarray): An ndarray of shape (3, 2). Specifies the
xyz bounds (min/max) in meters.
voxel_size (float): The volume discretization in meters.
"""
vol_bnds = np.asarray(vol_bnds)
assert vol_bnds.shape == (3, 2), "[!] `vol_bnds` should be of shape (3, 2)."
# Define voxel volume parameters
self._vol_bnds = vol_bnds
self._voxel_size = float(voxel_size)
self._trunc_margin = 5 * self._voxel_size # truncation on SDF
# self._trunc_margin = 10 # truncation on SDF
self._color_const = 256 * 256
# Adjust volume bounds and ensure C-order contiguous
self._vol_dim = (
np.ceil((self._vol_bnds[:, 1] - self._vol_bnds[:, 0]) / self._voxel_size)
.copy(order="C")
.astype(int)
)
self._vol_bnds[:, 1] = self._vol_bnds[:, 0] + self._vol_dim * self._voxel_size
self._vol_origin = self._vol_bnds[:, 0].copy(order="C").astype(np.float32)
print(
"Voxel volume size: {} x {} x {} - # points: {:,}".format(
self._vol_dim[0],
self._vol_dim[1],
self._vol_dim[2],
self._vol_dim[0] * self._vol_dim[1] * self._vol_dim[2],
)
)
# Initialize pointers to voxel volume in CPU memory
self._tsdf_vol_cpu = np.zeros(self._vol_dim).astype(np.float32)
# for computing the cumulative moving average of observations per voxel
self._weight_vol_cpu = np.zeros(self._vol_dim).astype(np.float32)
self._color_vol_cpu = np.zeros(self._vol_dim).astype(np.float32)
self.gpu_mode = use_gpu and FUSION_GPU_MODE
# Copy voxel volumes to GPU
if self.gpu_mode:
self._tsdf_vol_gpu = cuda.mem_alloc(self._tsdf_vol_cpu.nbytes)
cuda.memcpy_htod(self._tsdf_vol_gpu, self._tsdf_vol_cpu)
self._weight_vol_gpu = cuda.mem_alloc(self._weight_vol_cpu.nbytes)
cuda.memcpy_htod(self._weight_vol_gpu, self._weight_vol_cpu)
self._color_vol_gpu = cuda.mem_alloc(self._color_vol_cpu.nbytes)
cuda.memcpy_htod(self._color_vol_gpu, self._color_vol_cpu)
# Cuda kernel function (C++)
self._cuda_src_mod = SourceModule(
"""
__global__ void integrate(float * tsdf_vol,
float * weight_vol,
float * color_vol,
float * vol_dim,
float * vol_origin,
float * cam_intr,
float * cam_pose,
float * other_params,
float * color_im,
float * depth_im) {
// Get voxel index
int gpu_loop_idx = (int) other_params[0];
int max_threads_per_block = blockDim.x;
int block_idx = blockIdx.z*gridDim.y*gridDim.x+blockIdx.y*gridDim.x+blockIdx.x;
int voxel_idx = gpu_loop_idx*gridDim.x*gridDim.y*gridDim.z*max_threads_per_block+block_idx*max_threads_per_block+threadIdx.x;
int vol_dim_x = (int) vol_dim[0];
int vol_dim_y = (int) vol_dim[1];
int vol_dim_z = (int) vol_dim[2];
if (voxel_idx > vol_dim_x*vol_dim_y*vol_dim_z)
return;
// Get voxel grid coordinates (note: be careful when casting)
float voxel_x = floorf(((float)voxel_idx)/((float)(vol_dim_y*vol_dim_z)));
float voxel_y = floorf(((float)(voxel_idx-((int)voxel_x)*vol_dim_y*vol_dim_z))/((float)vol_dim_z));
float voxel_z = (float)(voxel_idx-((int)voxel_x)*vol_dim_y*vol_dim_z-((int)voxel_y)*vol_dim_z);
// Voxel grid coordinates to world coordinates
float voxel_size = other_params[1];
float pt_x = vol_origin[0]+voxel_x*voxel_size;
float pt_y = vol_origin[1]+voxel_y*voxel_size;
float pt_z = vol_origin[2]+voxel_z*voxel_size;
// World coordinates to camera coordinates
float tmp_pt_x = pt_x-cam_pose[0*4+3];
float tmp_pt_y = pt_y-cam_pose[1*4+3];
float tmp_pt_z = pt_z-cam_pose[2*4+3];
float cam_pt_x = cam_pose[0*4+0]*tmp_pt_x+cam_pose[1*4+0]*tmp_pt_y+cam_pose[2*4+0]*tmp_pt_z;
float cam_pt_y = cam_pose[0*4+1]*tmp_pt_x+cam_pose[1*4+1]*tmp_pt_y+cam_pose[2*4+1]*tmp_pt_z;
float cam_pt_z = cam_pose[0*4+2]*tmp_pt_x+cam_pose[1*4+2]*tmp_pt_y+cam_pose[2*4+2]*tmp_pt_z;
// Camera coordinates to image pixels
int pixel_x = (int) roundf(cam_intr[0*3+0]*(cam_pt_x/cam_pt_z)+cam_intr[0*3+2]);
int pixel_y = (int) roundf(cam_intr[1*3+1]*(cam_pt_y/cam_pt_z)+cam_intr[1*3+2]);
// Skip if outside view frustum
int im_h = (int) other_params[2];
int im_w = (int) other_params[3];
if (pixel_x < 0 || pixel_x >= im_w || pixel_y < 0 || pixel_y >= im_h || cam_pt_z<0)
return;
// Skip invalid depth
float depth_value = depth_im[pixel_y*im_w+pixel_x];
if (depth_value == 0)
return;
// Integrate TSDF
float trunc_margin = other_params[4];
float depth_diff = depth_value-cam_pt_z;
if (depth_diff < -trunc_margin)
return;
float dist = fmin(1.0f,depth_diff/trunc_margin);
float w_old = weight_vol[voxel_idx];
float obs_weight = other_params[5];
float w_new = w_old + obs_weight;
weight_vol[voxel_idx] = w_new;
tsdf_vol[voxel_idx] = (tsdf_vol[voxel_idx]*w_old+obs_weight*dist)/w_new;
// Integrate color
float old_color = color_vol[voxel_idx];
float old_b = floorf(old_color/(256*256));
float old_g = floorf((old_color-old_b*256*256)/256);
float old_r = old_color-old_b*256*256-old_g*256;
float new_color = color_im[pixel_y*im_w+pixel_x];
float new_b = floorf(new_color/(256*256));
float new_g = floorf((new_color-new_b*256*256)/256);
float new_r = new_color-new_b*256*256-new_g*256;
new_b = fmin(roundf((old_b*w_old+obs_weight*new_b)/w_new),255.0f);
new_g = fmin(roundf((old_g*w_old+obs_weight*new_g)/w_new),255.0f);
new_r = fmin(roundf((old_r*w_old+obs_weight*new_r)/w_new),255.0f);
color_vol[voxel_idx] = new_b*256*256+new_g*256+new_r;
}"""
)
self._cuda_integrate = self._cuda_src_mod.get_function("integrate")
# Determine block/grid size on GPU
gpu_dev = cuda.Device(0)
self._max_gpu_threads_per_block = gpu_dev.MAX_THREADS_PER_BLOCK
n_blocks = int(
np.ceil(
float(np.prod(self._vol_dim))
/ float(self._max_gpu_threads_per_block)
)
)
grid_dim_x = min(gpu_dev.MAX_GRID_DIM_X, int(np.floor(np.cbrt(n_blocks))))
grid_dim_y = min(
gpu_dev.MAX_GRID_DIM_Y, int(np.floor(np.sqrt(n_blocks / grid_dim_x)))
)
grid_dim_z = min(
gpu_dev.MAX_GRID_DIM_Z,
int(np.ceil(float(n_blocks) / float(grid_dim_x * grid_dim_y))),
)
self._max_gpu_grid_dim = np.array(
[grid_dim_x, grid_dim_y, grid_dim_z]
).astype(int)
self._n_gpu_loops = int(
np.ceil(
float(np.prod(self._vol_dim))
/ float(
np.prod(self._max_gpu_grid_dim)
* self._max_gpu_threads_per_block
)
)
)
else:
# Get voxel grid coordinates
xv, yv, zv = np.meshgrid(
range(self._vol_dim[0]),
range(self._vol_dim[1]),
range(self._vol_dim[2]),
indexing="ij",
)
self.vox_coords = (
np.concatenate(
[xv.reshape(1, -1), yv.reshape(1, -1), zv.reshape(1, -1)], axis=0
)
.astype(int)
.T
)
@staticmethod
@njit(parallel=True)
def vox2world(vol_origin, vox_coords, vox_size, offsets=(0.5, 0.5, 0.5)):
"""Convert voxel grid coordinates to world coordinates."""
vol_origin = vol_origin.astype(np.float32)
vox_coords = vox_coords.astype(np.float32)
# print(np.min(vox_coords))
cam_pts = np.empty_like(vox_coords, dtype=np.float32)
for i in prange(vox_coords.shape[0]):
for j in range(3):
cam_pts[i, j] = (
vol_origin[j]
+ (vox_size * vox_coords[i, j])
+ vox_size * offsets[j]
)
return cam_pts
@staticmethod
@njit(parallel=True)
def cam2pix(cam_pts, intr):
"""Convert camera coordinates to pixel coordinates."""
intr = intr.astype(np.float32)
fx, fy = intr[0, 0], intr[1, 1]
cx, cy = intr[0, 2], intr[1, 2]
pix = np.empty((cam_pts.shape[0], 2), dtype=np.int64)
for i in prange(cam_pts.shape[0]):
pix[i, 0] = int(np.round((cam_pts[i, 0] * fx / cam_pts[i, 2]) + cx))
pix[i, 1] = int(np.round((cam_pts[i, 1] * fy / cam_pts[i, 2]) + cy))
return pix
@staticmethod
@njit(parallel=True)
def integrate_tsdf(tsdf_vol, dist, w_old, obs_weight):
"""Integrate the TSDF volume."""
tsdf_vol_int = np.empty_like(tsdf_vol, dtype=np.float32)
# print(tsdf_vol.shape)
w_new = np.empty_like(w_old, dtype=np.float32)
for i in prange(len(tsdf_vol)):
w_new[i] = w_old[i] + obs_weight
tsdf_vol_int[i] = (w_old[i] * tsdf_vol[i] + obs_weight * dist[i]) / w_new[i]
return tsdf_vol_int, w_new
def integrate(self, color_im, depth_im, cam_intr, cam_pose, obs_weight=1.0):
"""Integrate an RGB-D frame into the TSDF volume.
Args:
color_im (ndarray): An RGB image of shape (H, W, 3).
depth_im (ndarray): A depth image of shape (H, W).
cam_intr (ndarray): The camera intrinsics matrix of shape (3, 3).
cam_pose (ndarray): The camera pose (i.e. extrinsics) of shape (4, 4).
obs_weight (float): The weight to assign for the current observation. A higher
value
"""
im_h, im_w = depth_im.shape
# Fold RGB color image into a single channel image
color_im = color_im.astype(np.float32)
color_im = np.floor(
color_im[..., 2] * self._color_const
+ color_im[..., 1] * 256
+ color_im[..., 0]
)
if self.gpu_mode: # GPU mode: integrate voxel volume (calls CUDA kernel)
for gpu_loop_idx in range(self._n_gpu_loops):
self._cuda_integrate(
self._tsdf_vol_gpu,
self._weight_vol_gpu,
self._color_vol_gpu,
cuda.InOut(self._vol_dim.astype(np.float32)),
cuda.InOut(self._vol_origin.astype(np.float32)),
cuda.InOut(cam_intr.reshape(-1).astype(np.float32)),
cuda.InOut(cam_pose.reshape(-1).astype(np.float32)),
cuda.InOut(
np.asarray(
[
gpu_loop_idx,
self._voxel_size,
im_h,
im_w,
self._trunc_margin,
obs_weight,
],
np.float32,
)
),
cuda.InOut(color_im.reshape(-1).astype(np.float32)),
cuda.InOut(depth_im.reshape(-1).astype(np.float32)),
block=(self._max_gpu_threads_per_block, 1, 1),
grid=(
int(self._max_gpu_grid_dim[0]),
int(self._max_gpu_grid_dim[1]),
int(self._max_gpu_grid_dim[2]),
),
)
else: # CPU mode: integrate voxel volume (vectorized implementation)
# Convert voxel grid coordinates to pixel coordinates
cam_pts = self.vox2world(
self._vol_origin, self.vox_coords, self._voxel_size
)
cam_pts = rigid_transform(cam_pts, np.linalg.inv(cam_pose))
pix_z = cam_pts[:, 2]
pix = self.cam2pix(cam_pts, cam_intr)
pix_x, pix_y = pix[:, 0], pix[:, 1]
# Eliminate pixels outside view frustum
valid_pix = np.logical_and(
pix_x >= 0,
np.logical_and(
pix_x < im_w,
np.logical_and(pix_y >= 0, np.logical_and(pix_y < im_h, pix_z > 0)),
),
)
depth_val = np.zeros(pix_x.shape)
depth_val[valid_pix] = depth_im[pix_y[valid_pix], pix_x[valid_pix]]
# Integrate TSDF
depth_diff = depth_val - pix_z
valid_pts = np.logical_and(depth_val > 0, depth_diff >= -10)
dist = depth_diff
valid_vox_x = self.vox_coords[valid_pts, 0]
valid_vox_y = self.vox_coords[valid_pts, 1]
valid_vox_z = self.vox_coords[valid_pts, 2]
w_old = self._weight_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z]
tsdf_vals = self._tsdf_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z]
valid_dist = dist[valid_pts]
tsdf_vol_new, w_new = self.integrate_tsdf(
tsdf_vals, valid_dist, w_old, obs_weight
)
self._weight_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z] = w_new
self._tsdf_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z] = tsdf_vol_new
# Integrate color
old_color = self._color_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z]
old_b = np.floor(old_color / self._color_const)
old_g = np.floor((old_color - old_b * self._color_const) / 256)
old_r = old_color - old_b * self._color_const - old_g * 256
new_color = color_im[pix_y[valid_pts], pix_x[valid_pts]]
new_b = np.floor(new_color / self._color_const)
new_g = np.floor((new_color - new_b * self._color_const) / 256)
new_r = new_color - new_b * self._color_const - new_g * 256
new_b = np.minimum(
255.0, np.round((w_old * old_b + obs_weight * new_b) / w_new)
)
new_g = np.minimum(
255.0, np.round((w_old * old_g + obs_weight * new_g) / w_new)
)
new_r = np.minimum(
255.0, np.round((w_old * old_r + obs_weight * new_r) / w_new)
)
self._color_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z] = (
new_b * self._color_const + new_g * 256 + new_r
)
def get_volume(self):
if self.gpu_mode:
cuda.memcpy_dtoh(self._tsdf_vol_cpu, self._tsdf_vol_gpu)
cuda.memcpy_dtoh(self._color_vol_cpu, self._color_vol_gpu)
return self._tsdf_vol_cpu, self._color_vol_cpu
def get_point_cloud(self):
"""Extract a point cloud from the voxel volume."""
tsdf_vol, color_vol = self.get_volume()
# Marching cubes
verts = measure.marching_cubes_lewiner(tsdf_vol, level=0)[0]
verts_ind = np.round(verts).astype(int)
verts = verts * self._voxel_size + self._vol_origin
# Get vertex colors
rgb_vals = color_vol[verts_ind[:, 0], verts_ind[:, 1], verts_ind[:, 2]]
colors_b = np.floor(rgb_vals / self._color_const)
colors_g = np.floor((rgb_vals - colors_b * self._color_const) / 256)
colors_r = rgb_vals - colors_b * self._color_const - colors_g * 256
colors = np.floor(np.asarray([colors_r, colors_g, colors_b])).T
colors = colors.astype(np.uint8)
pc = np.hstack([verts, colors])
return pc
def get_mesh(self):
"""Compute a mesh from the voxel volume using marching cubes."""
tsdf_vol, color_vol = self.get_volume()
# Marching cubes
verts, faces, norms, vals = measure.marching_cubes_lewiner(tsdf_vol, level=0)
verts_ind = np.round(verts).astype(int)
verts = (
verts * self._voxel_size + self._vol_origin
) # voxel grid coordinates to world coordinates
# Get vertex colors
rgb_vals = color_vol[verts_ind[:, 0], verts_ind[:, 1], verts_ind[:, 2]]
colors_b = np.floor(rgb_vals / self._color_const)
colors_g = np.floor((rgb_vals - colors_b * self._color_const) / 256)
colors_r = rgb_vals - colors_b * self._color_const - colors_g * 256
colors = np.floor(np.asarray([colors_r, colors_g, colors_b])).T
colors = colors.astype(np.uint8)
return verts, faces, norms, colors
def rigid_transform(xyz, transform):
"""Applies a rigid transform to an (N, 3) pointcloud."""
xyz_h = np.hstack([xyz, np.ones((len(xyz), 1), dtype=np.float32)])
xyz_t_h = np.dot(transform, xyz_h.T).T
return xyz_t_h[:, :3]
def get_view_frustum(depth_im, cam_intr, cam_pose):
"""Get corners of 3D camera view frustum of depth image"""
im_h = depth_im.shape[0]
im_w = depth_im.shape[1]
max_depth = np.max(depth_im)
view_frust_pts = np.array(
[
(np.array([0, 0, 0, im_w, im_w]) - cam_intr[0, 2])
* np.array([0, max_depth, max_depth, max_depth, max_depth])
/ cam_intr[0, 0],
(np.array([0, 0, im_h, 0, im_h]) - cam_intr[1, 2])
* np.array([0, max_depth, max_depth, max_depth, max_depth])
/ cam_intr[1, 1],
np.array([0, max_depth, max_depth, max_depth, max_depth]),
]
)
view_frust_pts = rigid_transform(view_frust_pts.T, cam_pose).T
return view_frust_pts
def meshwrite(filename, verts, faces, norms, colors):
"""Save a 3D mesh to a polygon .ply file."""
# Write header
ply_file = open(filename, "w")
ply_file.write("ply\n")
ply_file.write("format ascii 1.0\n")
ply_file.write("element vertex %d\n" % (verts.shape[0]))
ply_file.write("property float x\n")
ply_file.write("property float y\n")
ply_file.write("property float z\n")
ply_file.write("property float nx\n")
ply_file.write("property float ny\n")
ply_file.write("property float nz\n")
ply_file.write("property uchar red\n")
ply_file.write("property uchar green\n")
ply_file.write("property uchar blue\n")
ply_file.write("element face %d\n" % (faces.shape[0]))
ply_file.write("property list uchar int vertex_index\n")
ply_file.write("end_header\n")
# Write vertex list
for i in range(verts.shape[0]):
ply_file.write(
"%f %f %f %f %f %f %d %d %d\n"
% (
verts[i, 0],
verts[i, 1],
verts[i, 2],
norms[i, 0],
norms[i, 1],
norms[i, 2],
colors[i, 0],
colors[i, 1],
colors[i, 2],
)
)
# Write face list
for i in range(faces.shape[0]):
ply_file.write("3 %d %d %d\n" % (faces[i, 0], faces[i, 1], faces[i, 2]))
ply_file.close()
def pcwrite(filename, xyzrgb):
"""Save a point cloud to a polygon .ply file."""
xyz = xyzrgb[:, :3]
rgb = xyzrgb[:, 3:].astype(np.uint8)
# Write header
ply_file = open(filename, "w")
ply_file.write("ply\n")
ply_file.write("format ascii 1.0\n")
ply_file.write("element vertex %d\n" % (xyz.shape[0]))
ply_file.write("property float x\n")
ply_file.write("property float y\n")
ply_file.write("property float z\n")
ply_file.write("property uchar red\n")
ply_file.write("property uchar green\n")
ply_file.write("property uchar blue\n")
ply_file.write("end_header\n")
# Write vertex list
for i in range(xyz.shape[0]):
ply_file.write(
"%f %f %f %d %d %d\n"
% (
xyz[i, 0],
xyz[i, 1],
xyz[i, 2],
rgb[i, 0],
rgb[i, 1],
rgb[i, 2],
)
)
|