File size: 21,261 Bytes
4d85df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
"""
Most of the code is taken from https://github.com/andyzeng/tsdf-fusion-python/blob/master/fusion.py

@inproceedings{zeng20163dmatch,
    title={3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions},
    author={Zeng, Andy and Song, Shuran and Nie{\ss}ner, Matthias and Fisher, Matthew and Xiao, Jianxiong and Funkhouser, Thomas},
    booktitle={CVPR},
    year={2017}
}
"""

import numpy as np

from numba import njit, prange
from skimage import measure

FUSION_GPU_MODE = 0


class TSDFVolume:
    """Volumetric TSDF Fusion of RGB-D Images."""

    def __init__(self, vol_bnds, voxel_size, use_gpu=True):
        """Constructor.

        Args:
          vol_bnds (ndarray): An ndarray of shape (3, 2). Specifies the
            xyz bounds (min/max) in meters.
          voxel_size (float): The volume discretization in meters.
        """
        vol_bnds = np.asarray(vol_bnds)
        assert vol_bnds.shape == (3, 2), "[!] `vol_bnds` should be of shape (3, 2)."

        # Define voxel volume parameters
        self._vol_bnds = vol_bnds
        self._voxel_size = float(voxel_size)
        self._trunc_margin = 5 * self._voxel_size  # truncation on SDF
        # self._trunc_margin = 10  # truncation on SDF
        self._color_const = 256 * 256

        # Adjust volume bounds and ensure C-order contiguous
        self._vol_dim = (
            np.ceil((self._vol_bnds[:, 1] - self._vol_bnds[:, 0]) / self._voxel_size)
            .copy(order="C")
            .astype(int)
        )
        self._vol_bnds[:, 1] = self._vol_bnds[:, 0] + self._vol_dim * self._voxel_size
        self._vol_origin = self._vol_bnds[:, 0].copy(order="C").astype(np.float32)

        print(
            "Voxel volume size: {} x {} x {} - # points: {:,}".format(
                self._vol_dim[0],
                self._vol_dim[1],
                self._vol_dim[2],
                self._vol_dim[0] * self._vol_dim[1] * self._vol_dim[2],
            )
        )

        # Initialize pointers to voxel volume in CPU memory
        self._tsdf_vol_cpu = np.zeros(self._vol_dim).astype(np.float32)
        # for computing the cumulative moving average of observations per voxel
        self._weight_vol_cpu = np.zeros(self._vol_dim).astype(np.float32)
        self._color_vol_cpu = np.zeros(self._vol_dim).astype(np.float32)

        self.gpu_mode = use_gpu and FUSION_GPU_MODE

        # Copy voxel volumes to GPU
        if self.gpu_mode:
            self._tsdf_vol_gpu = cuda.mem_alloc(self._tsdf_vol_cpu.nbytes)
            cuda.memcpy_htod(self._tsdf_vol_gpu, self._tsdf_vol_cpu)
            self._weight_vol_gpu = cuda.mem_alloc(self._weight_vol_cpu.nbytes)
            cuda.memcpy_htod(self._weight_vol_gpu, self._weight_vol_cpu)
            self._color_vol_gpu = cuda.mem_alloc(self._color_vol_cpu.nbytes)
            cuda.memcpy_htod(self._color_vol_gpu, self._color_vol_cpu)

            # Cuda kernel function (C++)
            self._cuda_src_mod = SourceModule(
                """
        __global__ void integrate(float * tsdf_vol,
                                  float * weight_vol,
                                  float * color_vol,
                                  float * vol_dim,
                                  float * vol_origin,
                                  float * cam_intr,
                                  float * cam_pose,
                                  float * other_params,
                                  float * color_im,
                                  float * depth_im) {
          // Get voxel index
          int gpu_loop_idx = (int) other_params[0];
          int max_threads_per_block = blockDim.x;
          int block_idx = blockIdx.z*gridDim.y*gridDim.x+blockIdx.y*gridDim.x+blockIdx.x;
          int voxel_idx = gpu_loop_idx*gridDim.x*gridDim.y*gridDim.z*max_threads_per_block+block_idx*max_threads_per_block+threadIdx.x;
          int vol_dim_x = (int) vol_dim[0];
          int vol_dim_y = (int) vol_dim[1];
          int vol_dim_z = (int) vol_dim[2];
          if (voxel_idx > vol_dim_x*vol_dim_y*vol_dim_z)
              return;
          // Get voxel grid coordinates (note: be careful when casting)
          float voxel_x = floorf(((float)voxel_idx)/((float)(vol_dim_y*vol_dim_z)));
          float voxel_y = floorf(((float)(voxel_idx-((int)voxel_x)*vol_dim_y*vol_dim_z))/((float)vol_dim_z));
          float voxel_z = (float)(voxel_idx-((int)voxel_x)*vol_dim_y*vol_dim_z-((int)voxel_y)*vol_dim_z);
          // Voxel grid coordinates to world coordinates
          float voxel_size = other_params[1];
          float pt_x = vol_origin[0]+voxel_x*voxel_size;
          float pt_y = vol_origin[1]+voxel_y*voxel_size;
          float pt_z = vol_origin[2]+voxel_z*voxel_size;
          // World coordinates to camera coordinates
          float tmp_pt_x = pt_x-cam_pose[0*4+3];
          float tmp_pt_y = pt_y-cam_pose[1*4+3];
          float tmp_pt_z = pt_z-cam_pose[2*4+3];
          float cam_pt_x = cam_pose[0*4+0]*tmp_pt_x+cam_pose[1*4+0]*tmp_pt_y+cam_pose[2*4+0]*tmp_pt_z;
          float cam_pt_y = cam_pose[0*4+1]*tmp_pt_x+cam_pose[1*4+1]*tmp_pt_y+cam_pose[2*4+1]*tmp_pt_z;
          float cam_pt_z = cam_pose[0*4+2]*tmp_pt_x+cam_pose[1*4+2]*tmp_pt_y+cam_pose[2*4+2]*tmp_pt_z;
          // Camera coordinates to image pixels
          int pixel_x = (int) roundf(cam_intr[0*3+0]*(cam_pt_x/cam_pt_z)+cam_intr[0*3+2]);
          int pixel_y = (int) roundf(cam_intr[1*3+1]*(cam_pt_y/cam_pt_z)+cam_intr[1*3+2]);
          // Skip if outside view frustum
          int im_h = (int) other_params[2];
          int im_w = (int) other_params[3];
          if (pixel_x < 0 || pixel_x >= im_w || pixel_y < 0 || pixel_y >= im_h || cam_pt_z<0)
              return;
          // Skip invalid depth
          float depth_value = depth_im[pixel_y*im_w+pixel_x];
          if (depth_value == 0)
              return;
          // Integrate TSDF
          float trunc_margin = other_params[4];
          float depth_diff = depth_value-cam_pt_z;
          if (depth_diff < -trunc_margin)
              return;
          float dist = fmin(1.0f,depth_diff/trunc_margin);
          float w_old = weight_vol[voxel_idx];
          float obs_weight = other_params[5];
          float w_new = w_old + obs_weight;
          weight_vol[voxel_idx] = w_new;
          tsdf_vol[voxel_idx] = (tsdf_vol[voxel_idx]*w_old+obs_weight*dist)/w_new;
          // Integrate color
          float old_color = color_vol[voxel_idx];
          float old_b = floorf(old_color/(256*256));
          float old_g = floorf((old_color-old_b*256*256)/256);
          float old_r = old_color-old_b*256*256-old_g*256;
          float new_color = color_im[pixel_y*im_w+pixel_x];
          float new_b = floorf(new_color/(256*256));
          float new_g = floorf((new_color-new_b*256*256)/256);
          float new_r = new_color-new_b*256*256-new_g*256;
          new_b = fmin(roundf((old_b*w_old+obs_weight*new_b)/w_new),255.0f);
          new_g = fmin(roundf((old_g*w_old+obs_weight*new_g)/w_new),255.0f);
          new_r = fmin(roundf((old_r*w_old+obs_weight*new_r)/w_new),255.0f);
          color_vol[voxel_idx] = new_b*256*256+new_g*256+new_r;
        }"""
            )

            self._cuda_integrate = self._cuda_src_mod.get_function("integrate")

            # Determine block/grid size on GPU
            gpu_dev = cuda.Device(0)
            self._max_gpu_threads_per_block = gpu_dev.MAX_THREADS_PER_BLOCK
            n_blocks = int(
                np.ceil(
                    float(np.prod(self._vol_dim))
                    / float(self._max_gpu_threads_per_block)
                )
            )
            grid_dim_x = min(gpu_dev.MAX_GRID_DIM_X, int(np.floor(np.cbrt(n_blocks))))
            grid_dim_y = min(
                gpu_dev.MAX_GRID_DIM_Y, int(np.floor(np.sqrt(n_blocks / grid_dim_x)))
            )
            grid_dim_z = min(
                gpu_dev.MAX_GRID_DIM_Z,
                int(np.ceil(float(n_blocks) / float(grid_dim_x * grid_dim_y))),
            )
            self._max_gpu_grid_dim = np.array(
                [grid_dim_x, grid_dim_y, grid_dim_z]
            ).astype(int)
            self._n_gpu_loops = int(
                np.ceil(
                    float(np.prod(self._vol_dim))
                    / float(
                        np.prod(self._max_gpu_grid_dim)
                        * self._max_gpu_threads_per_block
                    )
                )
            )

        else:
            # Get voxel grid coordinates
            xv, yv, zv = np.meshgrid(
                range(self._vol_dim[0]),
                range(self._vol_dim[1]),
                range(self._vol_dim[2]),
                indexing="ij",
            )
            self.vox_coords = (
                np.concatenate(
                    [xv.reshape(1, -1), yv.reshape(1, -1), zv.reshape(1, -1)], axis=0
                )
                .astype(int)
                .T
            )

    @staticmethod
    @njit(parallel=True)
    def vox2world(vol_origin, vox_coords, vox_size, offsets=(0.5, 0.5, 0.5)):
        """Convert voxel grid coordinates to world coordinates."""
        vol_origin = vol_origin.astype(np.float32)
        vox_coords = vox_coords.astype(np.float32)
        #    print(np.min(vox_coords))
        cam_pts = np.empty_like(vox_coords, dtype=np.float32)

        for i in prange(vox_coords.shape[0]):
            for j in range(3):
                cam_pts[i, j] = (
                    vol_origin[j]
                    + (vox_size * vox_coords[i, j])
                    + vox_size * offsets[j]
                )
        return cam_pts

    @staticmethod
    @njit(parallel=True)
    def cam2pix(cam_pts, intr):
        """Convert camera coordinates to pixel coordinates."""
        intr = intr.astype(np.float32)
        fx, fy = intr[0, 0], intr[1, 1]
        cx, cy = intr[0, 2], intr[1, 2]
        pix = np.empty((cam_pts.shape[0], 2), dtype=np.int64)
        for i in prange(cam_pts.shape[0]):
            pix[i, 0] = int(np.round((cam_pts[i, 0] * fx / cam_pts[i, 2]) + cx))
            pix[i, 1] = int(np.round((cam_pts[i, 1] * fy / cam_pts[i, 2]) + cy))
        return pix

    @staticmethod
    @njit(parallel=True)
    def integrate_tsdf(tsdf_vol, dist, w_old, obs_weight):
        """Integrate the TSDF volume."""
        tsdf_vol_int = np.empty_like(tsdf_vol, dtype=np.float32)
        # print(tsdf_vol.shape)
        w_new = np.empty_like(w_old, dtype=np.float32)
        for i in prange(len(tsdf_vol)):
            w_new[i] = w_old[i] + obs_weight
            tsdf_vol_int[i] = (w_old[i] * tsdf_vol[i] + obs_weight * dist[i]) / w_new[i]
        return tsdf_vol_int, w_new

    def integrate(self, color_im, depth_im, cam_intr, cam_pose, obs_weight=1.0):
        """Integrate an RGB-D frame into the TSDF volume.

        Args:
          color_im (ndarray): An RGB image of shape (H, W, 3).
          depth_im (ndarray): A depth image of shape (H, W).
          cam_intr (ndarray): The camera intrinsics matrix of shape (3, 3).
          cam_pose (ndarray): The camera pose (i.e. extrinsics) of shape (4, 4).
          obs_weight (float): The weight to assign for the current observation. A higher
            value
        """
        im_h, im_w = depth_im.shape

        # Fold RGB color image into a single channel image
        color_im = color_im.astype(np.float32)
        color_im = np.floor(
            color_im[..., 2] * self._color_const
            + color_im[..., 1] * 256
            + color_im[..., 0]
        )

        if self.gpu_mode:  # GPU mode: integrate voxel volume (calls CUDA kernel)
            for gpu_loop_idx in range(self._n_gpu_loops):
                self._cuda_integrate(
                    self._tsdf_vol_gpu,
                    self._weight_vol_gpu,
                    self._color_vol_gpu,
                    cuda.InOut(self._vol_dim.astype(np.float32)),
                    cuda.InOut(self._vol_origin.astype(np.float32)),
                    cuda.InOut(cam_intr.reshape(-1).astype(np.float32)),
                    cuda.InOut(cam_pose.reshape(-1).astype(np.float32)),
                    cuda.InOut(
                        np.asarray(
                            [
                                gpu_loop_idx,
                                self._voxel_size,
                                im_h,
                                im_w,
                                self._trunc_margin,
                                obs_weight,
                            ],
                            np.float32,
                        )
                    ),
                    cuda.InOut(color_im.reshape(-1).astype(np.float32)),
                    cuda.InOut(depth_im.reshape(-1).astype(np.float32)),
                    block=(self._max_gpu_threads_per_block, 1, 1),
                    grid=(
                        int(self._max_gpu_grid_dim[0]),
                        int(self._max_gpu_grid_dim[1]),
                        int(self._max_gpu_grid_dim[2]),
                    ),
                )
        else:  # CPU mode: integrate voxel volume (vectorized implementation)
            # Convert voxel grid coordinates to pixel coordinates
            cam_pts = self.vox2world(
                self._vol_origin, self.vox_coords, self._voxel_size
            )
            cam_pts = rigid_transform(cam_pts, np.linalg.inv(cam_pose))
            pix_z = cam_pts[:, 2]
            pix = self.cam2pix(cam_pts, cam_intr)
            pix_x, pix_y = pix[:, 0], pix[:, 1]

            # Eliminate pixels outside view frustum
            valid_pix = np.logical_and(
                pix_x >= 0,
                np.logical_and(
                    pix_x < im_w,
                    np.logical_and(pix_y >= 0, np.logical_and(pix_y < im_h, pix_z > 0)),
                ),
            )
            depth_val = np.zeros(pix_x.shape)
            depth_val[valid_pix] = depth_im[pix_y[valid_pix], pix_x[valid_pix]]

            # Integrate TSDF
            depth_diff = depth_val - pix_z

            valid_pts = np.logical_and(depth_val > 0, depth_diff >= -10)
            dist = depth_diff

            valid_vox_x = self.vox_coords[valid_pts, 0]
            valid_vox_y = self.vox_coords[valid_pts, 1]
            valid_vox_z = self.vox_coords[valid_pts, 2]
            w_old = self._weight_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z]
            tsdf_vals = self._tsdf_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z]
            valid_dist = dist[valid_pts]
            tsdf_vol_new, w_new = self.integrate_tsdf(
                tsdf_vals, valid_dist, w_old, obs_weight
            )
            self._weight_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z] = w_new
            self._tsdf_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z] = tsdf_vol_new

            # Integrate color
            old_color = self._color_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z]
            old_b = np.floor(old_color / self._color_const)
            old_g = np.floor((old_color - old_b * self._color_const) / 256)
            old_r = old_color - old_b * self._color_const - old_g * 256
            new_color = color_im[pix_y[valid_pts], pix_x[valid_pts]]
            new_b = np.floor(new_color / self._color_const)
            new_g = np.floor((new_color - new_b * self._color_const) / 256)
            new_r = new_color - new_b * self._color_const - new_g * 256
            new_b = np.minimum(
                255.0, np.round((w_old * old_b + obs_weight * new_b) / w_new)
            )
            new_g = np.minimum(
                255.0, np.round((w_old * old_g + obs_weight * new_g) / w_new)
            )
            new_r = np.minimum(
                255.0, np.round((w_old * old_r + obs_weight * new_r) / w_new)
            )
            self._color_vol_cpu[valid_vox_x, valid_vox_y, valid_vox_z] = (
                new_b * self._color_const + new_g * 256 + new_r
            )

    def get_volume(self):
        if self.gpu_mode:
            cuda.memcpy_dtoh(self._tsdf_vol_cpu, self._tsdf_vol_gpu)
            cuda.memcpy_dtoh(self._color_vol_cpu, self._color_vol_gpu)
        return self._tsdf_vol_cpu, self._color_vol_cpu

    def get_point_cloud(self):
        """Extract a point cloud from the voxel volume."""
        tsdf_vol, color_vol = self.get_volume()

        # Marching cubes
        verts = measure.marching_cubes_lewiner(tsdf_vol, level=0)[0]
        verts_ind = np.round(verts).astype(int)
        verts = verts * self._voxel_size + self._vol_origin

        # Get vertex colors
        rgb_vals = color_vol[verts_ind[:, 0], verts_ind[:, 1], verts_ind[:, 2]]
        colors_b = np.floor(rgb_vals / self._color_const)
        colors_g = np.floor((rgb_vals - colors_b * self._color_const) / 256)
        colors_r = rgb_vals - colors_b * self._color_const - colors_g * 256
        colors = np.floor(np.asarray([colors_r, colors_g, colors_b])).T
        colors = colors.astype(np.uint8)

        pc = np.hstack([verts, colors])
        return pc

    def get_mesh(self):
        """Compute a mesh from the voxel volume using marching cubes."""
        tsdf_vol, color_vol = self.get_volume()

        # Marching cubes
        verts, faces, norms, vals = measure.marching_cubes_lewiner(tsdf_vol, level=0)
        verts_ind = np.round(verts).astype(int)
        verts = (
            verts * self._voxel_size + self._vol_origin
        )  # voxel grid coordinates to world coordinates

        # Get vertex colors
        rgb_vals = color_vol[verts_ind[:, 0], verts_ind[:, 1], verts_ind[:, 2]]
        colors_b = np.floor(rgb_vals / self._color_const)
        colors_g = np.floor((rgb_vals - colors_b * self._color_const) / 256)
        colors_r = rgb_vals - colors_b * self._color_const - colors_g * 256
        colors = np.floor(np.asarray([colors_r, colors_g, colors_b])).T
        colors = colors.astype(np.uint8)
        return verts, faces, norms, colors


def rigid_transform(xyz, transform):
    """Applies a rigid transform to an (N, 3) pointcloud."""
    xyz_h = np.hstack([xyz, np.ones((len(xyz), 1), dtype=np.float32)])
    xyz_t_h = np.dot(transform, xyz_h.T).T
    return xyz_t_h[:, :3]


def get_view_frustum(depth_im, cam_intr, cam_pose):
    """Get corners of 3D camera view frustum of depth image"""
    im_h = depth_im.shape[0]
    im_w = depth_im.shape[1]
    max_depth = np.max(depth_im)
    view_frust_pts = np.array(
        [
            (np.array([0, 0, 0, im_w, im_w]) - cam_intr[0, 2])
            * np.array([0, max_depth, max_depth, max_depth, max_depth])
            / cam_intr[0, 0],
            (np.array([0, 0, im_h, 0, im_h]) - cam_intr[1, 2])
            * np.array([0, max_depth, max_depth, max_depth, max_depth])
            / cam_intr[1, 1],
            np.array([0, max_depth, max_depth, max_depth, max_depth]),
        ]
    )
    view_frust_pts = rigid_transform(view_frust_pts.T, cam_pose).T
    return view_frust_pts


def meshwrite(filename, verts, faces, norms, colors):
    """Save a 3D mesh to a polygon .ply file."""
    # Write header
    ply_file = open(filename, "w")
    ply_file.write("ply\n")
    ply_file.write("format ascii 1.0\n")
    ply_file.write("element vertex %d\n" % (verts.shape[0]))
    ply_file.write("property float x\n")
    ply_file.write("property float y\n")
    ply_file.write("property float z\n")
    ply_file.write("property float nx\n")
    ply_file.write("property float ny\n")
    ply_file.write("property float nz\n")
    ply_file.write("property uchar red\n")
    ply_file.write("property uchar green\n")
    ply_file.write("property uchar blue\n")
    ply_file.write("element face %d\n" % (faces.shape[0]))
    ply_file.write("property list uchar int vertex_index\n")
    ply_file.write("end_header\n")

    # Write vertex list
    for i in range(verts.shape[0]):
        ply_file.write(
            "%f %f %f %f %f %f %d %d %d\n"
            % (
                verts[i, 0],
                verts[i, 1],
                verts[i, 2],
                norms[i, 0],
                norms[i, 1],
                norms[i, 2],
                colors[i, 0],
                colors[i, 1],
                colors[i, 2],
            )
        )

    # Write face list
    for i in range(faces.shape[0]):
        ply_file.write("3 %d %d %d\n" % (faces[i, 0], faces[i, 1], faces[i, 2]))

    ply_file.close()


def pcwrite(filename, xyzrgb):
    """Save a point cloud to a polygon .ply file."""
    xyz = xyzrgb[:, :3]
    rgb = xyzrgb[:, 3:].astype(np.uint8)

    # Write header
    ply_file = open(filename, "w")
    ply_file.write("ply\n")
    ply_file.write("format ascii 1.0\n")
    ply_file.write("element vertex %d\n" % (xyz.shape[0]))
    ply_file.write("property float x\n")
    ply_file.write("property float y\n")
    ply_file.write("property float z\n")
    ply_file.write("property uchar red\n")
    ply_file.write("property uchar green\n")
    ply_file.write("property uchar blue\n")
    ply_file.write("end_header\n")

    # Write vertex list
    for i in range(xyz.shape[0]):
        ply_file.write(
            "%f %f %f %d %d %d\n"
            % (
                xyz[i, 0],
                xyz[i, 1],
                xyz[i, 2],
                rgb[i, 0],
                rgb[i, 1],
                rgb[i, 2],
            )
        )