File size: 12,150 Bytes
c138d1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri May 20 15:15:11 2022
@author: dinesh
"""
from collections import OrderedDict
from matplotlib import pyplot as plt
from .utils import *
import scipy.interpolate
from scipy import interpolate
from .clustering_utils import *
import glob
import cv2
from PIL import Image
import json
import cv2
import numpy as np
from tqdm import tqdm
def ignore_indexes(tracks_all, labels_all):
# get repeating bounding boxes
get_indexes = lambda x, xs: [i for (y, i) in zip(xs, range(len(xs))) if x == y]
ignore_ind = []
for index, track in enumerate(tracks_all):
print('in ignore', index, len(tracks_all))
if index in ignore_ind:
continue
if labels_all[index] < 1 or labels_all[index] > 3:
ignore_ind.extend([index])
ind = get_indexes(track, tracks_all)
if len(ind) > 30:
ignore_ind.extend(ind)
return ignore_ind
def repeated_indexes_old(tracks_all,ignore_ind, unoccluded_indexes=None):
# get repeating bounding boxes
get_indexes = lambda x, xs: [i for (y, i) in zip(xs, range(len(xs))) if bb_intersection_over_union(x, y) > 0.8 and i not in ignore_ind]
repeat_ind = []
repeat_inds =[]
if unoccluded_indexes == None:
for index, track in enumerate(tracks_all):
if index in repeat_ind or index in ignore_ind:
continue
ind = get_indexes(track, tracks_all)
if len(ind) > 20:
repeat_ind.extend(ind)
repeat_inds.append([ind,track])
else:
for index in unoccluded_indexes:
if index in repeat_ind or index in ignore_ind:
continue
ind = get_indexes(tracks_all[index], tracks_all)
if len(ind) > 3:
repeat_ind.extend(ind)
repeat_inds.append([ind,tracks_all[index]])
return repeat_inds
def get_unoccluded_instances(timestamps_final, tracks_all, ignore_ind=[], threshold = 0.01):
get_indexes = lambda x, xs: [i for (y, i) in zip(xs, range(len(xs))) if x==y]
unoccluded_indexes = []
time_checked = []
stationary_obj = []
count =0
for time in tqdm(np.unique(timestamps_final), desc="Detecting Unocclued objects in Image "):
count += 1
if [time.year,time.month, time.day, time.hour, time.minute, time.second, time.microsecond] in time_checked:
analyze_bb = []
for ind in unoccluded_indexes_time:
for ind_compare in same_time_instances:
iou = bb_intersection_over_union(tracks_all[ind], tracks_all[ind_compare])
if iou < 0.5 and iou > 0:
analyze_bb.extend([ind_compare])
if iou > 0.99:
stationary_obj.extend([str(ind_compare)+'+'+str(ind)])
for ind in analyze_bb:
occ = False
for ind_compare in same_time_instances:
if bb_intersection_over_union_unoccluded(tracks_all[ind], tracks_all[ind_compare], threshold=threshold) > threshold and ind_compare != ind:
occ = True
break
if occ == False:
unoccluded_indexes.extend([ind])
continue
same_time_instances = get_indexes(time,timestamps_final)
unoccluded_indexes_time = []
for ind in same_time_instances:
if tracks_all[ind][4] < 0.9 or ind in ignore_ind:# or ind != 1859:
continue
occ = False
for ind_compare in same_time_instances:
if bb_intersection_over_union_unoccluded(tracks_all[ind], tracks_all[ind_compare], threshold=threshold) > threshold and ind_compare != ind and tracks_all[ind_compare][4] < 0.5:
occ = True
break
if occ==False:
unoccluded_indexes.extend([ind])
unoccluded_indexes_time.extend([ind])
time_checked.append([time.year,time.month, time.day, time.hour, time.minute, time.second, time.microsecond])
return unoccluded_indexes,stationary_obj
def visualize_unoccluded_detection(timestamps_final,tracks_all,segmentation_all, unoccluded_indexes, cwalt_data_path, camera_name, ignore_ind=[]):
tracks_final = []
tracks_final.append([])
try:
os.mkdir(cwalt_data_path + '/' + camera_name+'_unoccluded_car_detection/')
except:
print('Unoccluded debugging exists')
for time in tqdm(np.unique(timestamps_final), desc="Visualizing Unocclued objects in Image "):
get_indexes = lambda x, xs: [i for (y, i) in zip(xs, range(len(xs))) if x==y]
ind = get_indexes(time, timestamps_final)
image_unocc = False
for index in ind:
if index not in unoccluded_indexes:
continue
else:
image_unocc = True
break
if image_unocc == False:
continue
for week_loop in range(5):
try:
image = np.array(Image.open(cwalt_data_path+'/week' +str(week_loop)+'/'+ str(time).replace(' ','T').replace(':','-').split('+')[0] + '.jpg'))
break
except:
continue
try:
mask = image*0
except:
print('image not found for ' + str(time).replace(' ','T').replace(':','-').split('+')[0] + '.jpg' )
continue
image_original = image.copy()
for index in ind:
track = tracks_all[index]
if index in ignore_ind:
continue
if index not in unoccluded_indexes:
continue
try:
bb_left, bb_top, bb_width, bb_height, confidence, id = track
except:
bb_left, bb_top, bb_width, bb_height, confidence = track
if confidence > 0.6:
mask = poly_seg(image, segmentation_all[index])
cv2.imwrite(cwalt_data_path + '/' + camera_name+'_unoccluded_car_detection/' + str(index)+'.png', mask[:, :, ::-1])
def repeated_indexes(tracks_all,ignore_ind, repeat_count = 10, unoccluded_indexes=None):
get_indexes = lambda x, xs: [i for (y, i) in zip(xs, range(len(xs))) if bb_intersection_over_union(x, y) > 0.8 and i not in ignore_ind]
repeat_ind = []
repeat_inds =[]
if unoccluded_indexes == None:
for index, track in enumerate(tracks_all):
if index in repeat_ind or index in ignore_ind:
continue
ind = get_indexes(track, tracks_all)
if len(ind) > repeat_count:
repeat_ind.extend(ind)
repeat_inds.append([ind,track])
else:
for index in unoccluded_indexes:
if index in repeat_ind or index in ignore_ind:
continue
ind = get_indexes(tracks_all[index], tracks_all)
if len(ind) > repeat_count:
repeat_ind.extend(ind)
repeat_inds.append([ind,tracks_all[index]])
return repeat_inds
def poly_seg(image, segm):
poly = np.array(segm).reshape((int(len(segm)/2), 2))
overlay = image.copy()
alpha = 0.5
cv2.fillPoly(overlay, [poly], color=(255, 255, 0))
cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0, image)
return image
def visualize_unoccuded_clusters(repeat_inds, tracks, segmentation_all, timestamps_final, cwalt_data_path):
for index_, repeat_ind in enumerate(repeat_inds):
image = np.array(Image.open(cwalt_data_path+'/'+'T18-median_image.jpg'))
try:
os.mkdir(cwalt_data_path+ '/Cwalt_database/')
except:
print('folder exists')
try:
os.mkdir(cwalt_data_path+ '/Cwalt_database/' + str(index_) +'/')
except:
print(cwalt_data_path+ '/Cwalt_database/' + str(index_) +'/')
for i in repeat_ind[0]:
try:
bb_left, bb_top, bb_width, bb_height, confidence = tracks[i]#bbox
except:
bb_left, bb_top, bb_width, bb_height, confidence, track_id = tracks[i]#bbox
cv2.rectangle(image,(int(bb_left), int(bb_top)),(int(bb_left+bb_width), int(bb_top+bb_height)),(0, 0, 255), 2)
time = timestamps_final[i]
for week_loop in range(5):
try:
image1 = np.array(Image.open(cwalt_data_path+'/week' +str(week_loop)+'/'+ str(time).replace(' ','T').replace(':','-').split('+')[0] + '.jpg'))
break
except:
continue
crop = image1[int(bb_top): int(bb_top + bb_height), int(bb_left):int(bb_left + bb_width)]
cv2.imwrite(cwalt_data_path+ '/Cwalt_database/' + str(index_) +'/o_' + str(i) +'.jpg', crop[:, :, ::-1])
image1 = poly_seg(image1,segmentation_all[i])
crop = image1[int(bb_top): int(bb_top + bb_height), int(bb_left):int(bb_left + bb_width)]
cv2.imwrite(cwalt_data_path+ '/Cwalt_database/' + str(index_) +'/' + str(i)+'.jpg', crop[:, :, ::-1])
if index_ > 100:
break
cv2.imwrite(cwalt_data_path+ '/Cwalt_database/' + str(index_) +'.jpg', image[:, :, ::-1])
def Get_unoccluded_objects(camera_name, debug = False, scale=True):
cwalt_data_path = 'data/' + camera_name
data_folder = cwalt_data_path
json_file_path = cwalt_data_path + '/' + camera_name + '.json'
with open(json_file_path, 'r') as j:
annotations = json.loads(j.read())
tracks_all = [parse_bbox(anno['bbox']) for anno in annotations]
segmentation_all = [parse_bbox(anno['segmentation']) for anno in annotations]
labels_all = [anno['label_id'] for anno in annotations]
timestamps_final = [parse(anno['time']) for anno in annotations]
if scale ==True:
scale_factor = 2
tracks_all_numpy = np.array(tracks_all)
tracks_all_numpy[:,:4] = np.array(tracks_all)[:,:4]/scale_factor
tracks_all = tracks_all_numpy.tolist()
segmentation_all_scaled = []
for list_loop in segmentation_all:
segmentation_all_scaled.append((np.floor_divide(np.array(list_loop),scale_factor)).tolist())
segmentation_all = segmentation_all_scaled
if debug == True:
timestamps_final = timestamps_final[:1000]
labels_all = labels_all[:1000]
segmentation_all = segmentation_all[:1000]
tracks_all = tracks_all[:1000]
unoccluded_indexes, stationary = get_unoccluded_instances(timestamps_final, tracks_all, threshold = 0.05)
if debug == True:
visualize_unoccluded_detection(timestamps_final, tracks_all, segmentation_all, unoccluded_indexes, cwalt_data_path, camera_name)
tracks_all_unoccluded = [tracks_all[i] for i in unoccluded_indexes]
segmentation_all_unoccluded = [segmentation_all[i] for i in unoccluded_indexes]
labels_all_unoccluded = [labels_all[i] for i in unoccluded_indexes]
timestamps_final_unoccluded = [timestamps_final[i] for i in unoccluded_indexes]
np.savez(json_file_path,tracks_all_unoccluded=tracks_all_unoccluded, segmentation_all_unoccluded=segmentation_all_unoccluded, labels_all_unoccluded=labels_all_unoccluded, timestamps_final_unoccluded=timestamps_final_unoccluded )
if debug == True:
repeat_inds_clusters = repeated_indexes(tracks_all_unoccluded,[], repeat_count=1)
visualize_unoccuded_clusters(repeat_inds_clusters, tracks_all_unoccluded, segmentation_all_unoccluded, timestamps_final_unoccluded, cwalt_data_path)
else:
repeat_inds_clusters = repeated_indexes(tracks_all_unoccluded,[], repeat_count=10)
np.savez(json_file_path + '_clubbed', repeat_inds=repeat_inds_clusters)
np.savez(json_file_path + '_stationary', stationary=stationary)
|