File size: 8,436 Bytes
a4fb052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import pandas as pd
import os
import torch
from PIL import Image
from torch.utils.data import Dataset
import clip
from torch.utils.data import DataLoader
import torchvision.transforms as tf
import torchvision.transforms.functional as TF


try:
    from torchvision.transforms import InterpolationMode
    BICUBIC = InterpolationMode.BICUBIC
except ImportError:
    BICUBIC = Image.BICUBIC
    
    
class ExtractFeaturesDataset(Dataset):
    def __init__(self,

                 annotations,

                 img_path,

                 image_transforms=None,

                 question_transforms=None,

                 tta=False):
        
        
        self.img_path = img_path
        self.image_transforms = image_transforms
        self.question_transforms = question_transforms
        
        self.img_ids = annotations["image_id"].values
        self.split = annotations["split"].values
        self.questions = annotations["question"].values
        
        self.tta = tta
       


    def __getitem__(self, index):

        image_id = self.img_ids[index]
        split = self.split[index]
        
        # image input
        with open(os.path.join(self.img_path, split, image_id), "rb") as f:
            img = Image.open(f)
            
            if self.tta:   
                image_augmentations = []
                
                for transform in self.image_transforms:
                    
                    image_augmentations.append(transform(img))
               
        
                img = torch.stack(image_augmentations, dim=0)
                
            else:
                img = self.image_transforms(img)
            
        question = self.questions[index]
        
        if self.question_transforms: 
            question = self.question_transforms(question)

        # question input
        question = clip.tokenize(question, truncate=True) 
        question = question.squeeze()
            
        return img, question, image_id
    
    def __len__(self):
        return len(self.img_ids)
    
        
def _convert_image_to_rgb(image):
    return image.convert("RGB")


def Sharpen(sharpness_factor=1.0):
    
    def wrapper(x):
    
        return TF.adjust_sharpness(x, sharpness_factor)
    
    return wrapper


def Rotate(angle=0.0):
    
    def wrapper(x):
        return TF.rotate(x, angle)
    
    return wrapper

def transform_crop(n_px):
    return tf.Compose([
        tf.Resize(n_px, interpolation=BICUBIC),
        tf.CenterCrop(n_px),
        _convert_image_to_rgb,
        tf.ToTensor(),
        tf.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
    ])

def transform_crop_rotate(n_px, rotation_angle=0.0):
    return tf.Compose([
        Rotate(angle=rotation_angle),
        tf.Resize(n_px, interpolation=BICUBIC),
        tf.CenterCrop(n_px),
        _convert_image_to_rgb,
        tf.ToTensor(),
        tf.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
    ])


def transform_resize(n_px):
    return tf.Compose([
        tf.Resize((n_px, n_px), interpolation=BICUBIC),
        _convert_image_to_rgb,
        tf.ToTensor(),
        tf.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
    ])


def transform_resize_rotate(n_px, rotation_angle=0.0):
    return tf.Compose([
        Rotate(angle=rotation_angle),
        tf.Resize((n_px, n_px), interpolation=BICUBIC),
        _convert_image_to_rgb,
        tf.ToTensor(),
        tf.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
    ])

def get_tta_preprocess(img_size):
    
    img_preprocess = [
                      transform_crop(img_size),
                      transform_crop_rotate(img_size, rotation_angle=90.0),
                      transform_crop_rotate(img_size, rotation_angle=270.0),
                      transform_resize(img_size),
                      transform_resize_rotate(img_size, rotation_angle=90.0),
                      transform_resize_rotate(img_size, rotation_angle=270.0),
                      ]
    
    return img_preprocess

def question_preprocess(question, debug=False):
    
    question = question.replace("?", ".")

    if question[-1] == " ":
        question = question[:-1]
         

    if question[-1] != ".":
        question = question + "."				
				   
    if debug:
        print("Question:", question)
        
    return question

            
def get_dataloader_extraction(config):


    if config.use_question_preprocess:
        print("Using custom preprocessing: Question")
        question_transforms = question_preprocess
    else:
        question_transforms = None
    
    if config.tta:
        ("Using augmentation transforms:")
        img_preprocess = get_tta_preprocess(config.img_size)
    else:
        ("Using original CLIP transforms:")
        img_preprocess = transform_crop(config.img_size)
           
    

    train_data = pd.read_csv(config.train_annotations_path)
      
    train_dataset = ExtractFeaturesDataset(annotations = train_data,
                                      img_path=config.img_path,
                                      image_transforms=img_preprocess,
                                      question_transforms=question_transforms,
                                      tta=config.tta)
    
    
    
    train_loader = DataLoader(dataset=train_dataset, 
                              batch_size=config.batch_size, 
                              shuffle=False,
                              num_workers=config.num_workers)
    
         
    
    test_data = pd.read_csv(config.test_annotations_path)
      
    test_dataset = ExtractFeaturesDataset(annotations = test_data,
                                      img_path=config.img_path,
                                      image_transforms=img_preprocess,
                                      question_transforms=question_transforms,
                                      tta=config.tta)
    
    
    test_loader = ExtractFeaturesDataset(dataset=test_dataset, 
                              batch_size=config.batch_size, 
                              shuffle=False,
                              num_workers=config.num_workers)
    
    return train_loader, test_loader


def get_dataloader_inference(config):
    
    if config.use_question_preprocess:
        print("Using custom preprocessing: Question")
        question_transforms = question_preprocess
    else:
        question_transforms = None
    
    if config.tta:
        ("Using augmentation transforms:")
        img_preprocess = transform_resize(config.img_size)
    else:
        ("Using original CLIP transforms:")
        img_preprocess = transform_crop(config.img_size)
           
    

    train_data = pd.read_csv(config.train_annotations_path)
      
    train_dataset = ExtractFeaturesDataset(annotations = train_data,
                                      img_path=config.img_path,
                                      image_transforms=img_preprocess,
                                      question_transforms=question_transforms,
                                      tta=config.tta)
    
    
    
    train_loader = DataLoader(dataset=train_dataset, 
                              batch_size=config.batch_size, 
                              shuffle=False,
                              num_workers=config.num_workers)
    
         
    
    test_data = pd.read_csv(config.test_annotations_path)
      
    test_dataset = ExtractFeaturesDataset(annotations = test_data,
                                      img_path=config.img_path,
                                      image_transforms=img_preprocess,
                                      question_transforms=question_transforms,
                                      tta=config.tta)
    
    
    test_loader = ExtractFeaturesDataset(dataset=test_dataset, 
                              batch_size=config.batch_size, 
                              shuffle=False,
                              num_workers=config.num_workers)
    
    return train_loader, test_loader