File size: 45,651 Bytes
28958dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
#! /usr/bin/env python
# -*- coding: utf-8 -*-

###############################################################################
# Copyright (c) 2012-7 Bryce Adelstein Lelbach aka wash <brycelelbach@gmail.com>
#
# Distributed under the Boost Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
###############################################################################

###############################################################################
# Copyright (c) 2018 NVIDIA Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################

# XXX Put code shared with `combine_benchmark_results.py` in a common place.

# XXX Relative uncertainty.

# XXX Create uncertain value class which is quantity + uncertainty.

from sys import exit, stdout

from os.path import splitext

from itertools import imap # Lazy map.

from math import sqrt, log10, floor

from collections import deque

from argparse import ArgumentParser as argument_parser
from argparse import Action as argument_action

from csv import DictReader as csv_dict_reader
from csv import DictWriter as csv_dict_writer

from re import compile as regex_compile

###############################################################################

def unpack_tuple(f):
  """Return a unary function that calls `f` with its argument unpacked."""
  return lambda args: f(*iter(args))

def strip_dict(d):
  """Strip leading and trailing whitespace from all keys and values in `d`.

  Returns:
    The modified dict `d`.
  """
  d.update({key: value.strip() for (key, value) in d.items()})
  return d

def merge_dicts(d0, d1):
  """Create a new `dict` that is the union of `dict`s `d0` and `d1`."""
  d = d0.copy()
  d.update(d1)
  return d

def change_key_in_dict(d, old_key, new_key):
  """Change the key of the entry in `d` with key `old_key` to `new_key`. If
  there is an existing entry 

  Returns:
    The modified dict `d`.

  Raises:
    KeyError : If `old_key` is not in `d`.
  """
  d[new_key] = d.pop(old_key)
  return d

def key_from_dict(d):
  """Create a hashable key from a `dict` by converting the `dict` to a tuple."""
  return tuple(sorted(d.items()))

def strip_list(l):
  """Strip leading and trailing whitespace from all values in `l`."""
  for i, value in enumerate(l): l[i] = value.strip()
  return l

def remove_from_list(l, item):
  """Remove the first occurence of `item` from list `l` and return a tuple of
  the index that was removed and the element that was removed.

  Raises:
    ValueError : If `item` is not in `l`.
  """
  idx = l.index(item)
  item = l.pop(idx)
  return (idx, item)

###############################################################################

def int_or_float(x):
  """Convert `x` to either `int` or `float`, preferring `int`.

  Raises:
    ValueError : If `x` is not convertible to either `int` or `float`
  """
  try:
    return int(x)
  except ValueError:
    return float(x)

def try_int_or_float(x):
  """Try to convert `x` to either `int` or `float`, preferring `int`. `x` is
  returned unmodified if conversion fails.
  """
  try:
    return int_or_float(x)
  except ValueError:
    return x

###############################################################################

def ranges_overlap(x1, x2, y1, y2):
  """Returns true if the ranges `[x1, x2]` and `[y1, y2]` overlap,
  where `x1 <= x2` and `y1 <= y2`.

  Raises:
    AssertionError : If `x1 > x2` or `y1 > y2`.
  """
  assert x1 <= x2
  assert y1 <= y2
  return x1 <= y2 and y1 <= x2

def ranges_overlap_uncertainty(x, x_unc, y, y_unc):
  """Returns true if the ranges `[x - x_unc, x + x_unc]` and
  `[y - y_unc, y + y_unc]` overlap, where `x_unc >= 0` and `y_unc >= 0`.

  Raises:
    AssertionError : If `x_unc < 0` or `y_unc < 0`.
  """
  assert x_unc >= 0
  assert y_unc >= 0
  return ranges_overlap(x - x_unc, x + x_unc, y - y_unc, y + y_unc)

###############################################################################

# Formulas for propagation of uncertainty from:
#
#   https://en.wikipedia.org/wiki/Propagation_of_uncertainty#Example_formulas
#
# Even though it's Wikipedia, I trust it as I helped write that table.
#
# XXX Replace with a proper reference.

def uncertainty_multiplicative(f, A, A_abs_unc, B, B_abs_unc):
  """Compute the propagated uncertainty from the multiplication of two
  uncertain values, `A +/- A_abs_unc` and `B +/- B_abs_unc`. Given `f = AB` or
  `f = A/B`, where `A != 0` and `B != 0`, the uncertainty in `f` is
  approximately:

  .. math::

    \sigma_f = |f| \sqrt{\frac{\sigma_A}{A} ^ 2 + \frac{\sigma_B}{B} ^ 2}

  Raises:
    ZeroDivisionError : If `A == 0` or `B == 0`.
  """
  return abs(f) * sqrt((A_abs_unc / A) ** 2 + (B_abs_unc / B) ** 2);

def uncertainty_additive(c, A_abs_unc, d, B_abs_unc):
  """Compute the propagated uncertainty from addition of two uncertain values,
  `A +/- A_abs_unc` and `B +/- B_abs_unc`. Given `f = cA + dB`, where `c` and
  `d` are certain constants, the uncertainty in `f` is approximately:

  .. math::

    f_{\sigma} = \sqrt{c ^ 2 * A_{\sigma} ^ 2 + d ^ 2 * B_{\sigma} ^ 2}
  """
  return sqrt(((c ** 2) * (A_abs_unc ** 2)) + ((d ** 2) * (B_abs_unc ** 2)))

###############################################################################

# XXX Create change class.

def absolute_change(old, new):
  """Computes the absolute change from old to new:

  .. math::

    absolute_change = new - old
  """
  return new - old

def absolute_change_uncertainty(old, old_unc, new, new_unc):
  """Computes the uncertainty in the absolute change from old to new and returns
  a tuple of the absolute change and the absolute change uncertainty.
  """
  absolute_change     = new - old
  absolute_change_unc = uncertainty_additive(1.0, new_unc, -1.0, old_unc)

  return (absolute_change, absolute_change_unc)

def percent_change(old, new):
  """Computes the percent change from old to new:

  .. math::

    percent_change = 100 \frac{new - old}{abs(old)}
  """
  return float(new - old) / abs(old)

def percent_change_uncertainty(old, old_unc, new, new_unc):
  """Computes the uncertainty in the percent change from old to new and returns
  a tuple of the absolute change, the absolute change uncertainty, the percent
  change and the percent change uncertainty.
  """
  # Let's break this down into a few sub-operations:
  # 
  #   absolute_change = new - old         <- Additive propagation.
  #   relative_change = change / abs(old) <- Multiplicative propagation.
  #   percent_change  = 100 * y           <- Multiplicative propagation.

  if old == 0:
    # We can't compute relative change because the old value is 0.
    return (float("nan"), float("nan"), float("nan"), float("nan"))

  (absolute_change, absolute_change_unc) = absolute_change_uncertainty(
    old, old_unc, new, new_unc
  )

  if absolute_change == 0:
    # We can't compute relative change uncertainty because the relative
    # uncertainty of a value of 0 is undefined.
    return (absolute_change, absolute_change_unc, float("nan"), float("nan"))

  relative_change     = float(absolute_change) / abs(old)
  relative_change_unc = uncertainty_multiplicative(
    relative_change, absolute_change, absolute_change_unc, old, old_unc
  )

  percent_change = 100.0 * relative_change
  percent_change_unc = uncertainty_multiplicative(
    percent_change, 100.0, 0.0, relative_change, relative_change_unc
  )

  return (
    absolute_change, absolute_change_unc, percent_change, percent_change_unc
  )

###############################################################################

def find_significant_digit(x):
  """Return the significant digit of the number x. The result is the number of
  digits after the decimal place to round to (negative numbers indicate rounding
  before the decimal place)."""
  if x == 0: return 0
  return -int(floor(log10(abs(x))))

def round_with_int_conversion(x, ndigits = None):
  """Rounds `x` to `ndigits` after the the decimal place. If `ndigits` is less
  than 1, convert the result to `int`. If `ndigits` is `None`, the significant
  digit of `x` is used."""
  if ndigits is None: ndigits = find_significant_digit(x)
  x_rounded = round(x, ndigits)
  return int(x_rounded) if ndigits < 1 else x_rounded

###############################################################################

class measured_variable(object):
  """A meta-variable representing measured data. It is composed of three raw
  variables plus units meta-data.

  Attributes:
    quantity (`str`) :
      Name of the quantity variable of this object.
    uncertainty (`str`) :
      Name of the uncertainty variable of this object.
    sample_size (`str`) :
      Name of the sample size variable of this object.
    units (units class or `None`) :
      The units the value is measured in.
  """

  def __init__(self, quantity, uncertainty, sample_size, units = None):
    self.quantity    = quantity
    self.uncertainty = uncertainty
    self.sample_size = sample_size
    self.units       = units

  def as_tuple(self):
    return (self.quantity, self.uncertainty, self.sample_size, self.units)

  def __iter__(self):
    return iter(self.as_tuple())

  def __str__(self):
    return str(self.as_tuple())

  def __repr__(self):
    return str(self)

class measured_value(object):
  """An object that represents a value determined by multiple measurements.

  Attributes:
    quantity (scalar) :
      The quantity of the value, e.g. the arithmetic mean.
    uncertainty (scalar) :
      The measurement uncertainty, e.g. the sample standard deviation.
    sample_size (`int`) :
      The number of observations contributing to the value.
    units (units class or `None`) :
      The units the value is measured in.
  """

  def __init__(self, quantity, uncertainty, sample_size = 1, units = None):
    self.quantity    = quantity
    self.uncertainty = uncertainty
    self.sample_size = sample_size
    self.units       = units

  def as_tuple(self):
    return (self.quantity, self.uncertainty, self.sample_size, self.units)

  def __iter__(self):
    return iter(self.as_tuple())

  def __str__(self):
    return str(self.as_tuple())

  def __repr__(self):
    return str(self)

###############################################################################

def arithmetic_mean(X):
  """Computes the arithmetic mean of the sequence `X`.

  Let:

    * `n = len(X)`.
    * `u` denote the arithmetic mean of `X`.

  .. math::

    u = \frac{\sum_{i = 0}^{n - 1} X_i}{n}
  """
  return sum(X) / len(X)

def sample_variance(X, u = None):
  """Computes the sample variance of the sequence `X`.

  Let:

    * `n = len(X)`.
    * `u` denote the arithmetic mean of `X`.
    * `s` denote the sample standard deviation of `X`.

  .. math::

    v = \frac{\sum_{i = 0}^{n - 1} (X_i - u)^2}{n - 1}

  Args:
    X (`Iterable`) : The sequence of values.
    u (number)     : The arithmetic mean of `X`.
  """
  if u is None: u = arithmetic_mean(X)
  return sum(imap(lambda X_i: (X_i - u) ** 2, X)) / (len(X) - 1)
 
def sample_standard_deviation(X, u = None, v = None):
  """Computes the sample standard deviation of the sequence `X`.

  Let:

    * `n = len(X)`.
    * `u` denote the arithmetic mean of `X`.
    * `v` denote the sample variance of `X`.
    * `s` denote the sample standard deviation of `X`.

  .. math::

    s &= \sqrt{v}
      &= \sqrt{\frac{\sum_{i = 0}^{n - 1} (X_i - u)^2}{n - 1}}

  Args:
    X (`Iterable`) : The sequence of values.
    u (number)     : The arithmetic mean of `X`.
    v (number)     : The sample variance of `X`.
  """
  if u is None: u = arithmetic_mean(X)
  if v is None: v = sample_variance(X, u)
  return sqrt(v)

def combine_sample_size(As):
  """Computes the combined sample variance of a group of `measured_value`s.

  Let:

    * `g = len(As)`.
    * `n_i = As[i].samples`.
    * `n` denote the combined sample size of `As`.

  .. math::

    n = \sum{i = 0}^{g - 1} n_i
  """
  return sum(imap(unpack_tuple(lambda u_i, s_i, n_i, t_i: n_i), As))

def combine_arithmetic_mean(As, n = None):
  """Computes the combined arithmetic mean of a group of `measured_value`s.

  Let:

    * `g = len(As)`.
    * `u_i = As[i].quantity`.
    * `n_i = As[i].samples`.
    * `n` denote the combined sample size of `As`.
    * `u` denote the arithmetic mean of the quantities of `As`.

  .. math::

    u = \frac{\sum{i = 0}^{g - 1} n_i u_i}{n}
  """
  if n is None: n = combine_sample_size(As)
  return sum(imap(unpack_tuple(lambda u_i, s_i, n_i, t_i: n_i * u_i), As)) / n
  
def combine_sample_variance(As, n = None, u = None):
  """Computes the combined sample variance of a group of `measured_value`s.

  Let:

    * `g = len(As)`.
    * `u_i = As[i].quantity`.
    * `s_i = As[i].uncertainty`.
    * `n_i = As[i].samples`.
    * `n` denote the combined sample size of `As`.
    * `u` denote the arithmetic mean of the quantities of `As`.
    * `v` denote the sample variance of `X`.

  .. math::

    v = \frac{(\sum_{i = 0}^{g - 1} n_i (u_i - u)^2 + s_i^2 (n_i - 1))}{n - 1}

  Args:
    As (`Iterable` of `measured_value`s) : The sequence of values.
    n (number)                           : The combined sample sizes of `As`.
    u (number)                           : The combined arithmetic mean of `As`.
  """
  if n <= 1: return 0
  if n is None: n = combine_sample_size(As)
  if u is None: u = combine_arithmetic_mean(As, n)
  return sum(imap(unpack_tuple(
    lambda u_i, s_i, n_i, t_i: n_i * (u_i - u) ** 2 + (s_i ** 2) * (n_i - 1)
  ), As)) / (n - 1)

def combine_sample_standard_deviation(As, n = None, u = None, v = None):
  """Computes the combined sample standard deviation of a group of
  `measured_value`s.

  Let:

    * `g = len(As)`.
    * `u_i = As[i].quantity`.
    * `s_i = As[i].uncertainty`.
    * `n_i = As[i].samples`.
    * `n` denote the combined sample size of `As`.
    * `u` denote the arithmetic mean of the quantities of `As`.
    * `v` denote the sample variance of `X`.
    * `s` denote the sample standard deviation of `X`.

  .. math::
    v &= \frac{(\sum_{i = 0}^{g - 1} n_i (u_i - u)^2 + s_i^2 (n_i - 1))}{n - 1}

    s &= \sqrt{v}

  Args:
    As (`Iterable` of `measured_value`s) : The sequence of values.
    n (number)                           : The combined sample sizes of `As`.
    u (number)                           : The combined arithmetic mean of `As`.
    v (number)                           : The combined sample variance of `As`.
  """
  if n <= 1: return 0
  if n is None: n = combine_sample_size(As)
  if u is None: u = combine_arithmetic_mean(As, n)
  if v is None: v = combine_sample_variance(As, n, u)
  return sqrt(v)

###############################################################################

def store_const_multiple(const, *destinations):
  """Returns an `argument_action` class that sets multiple argument
  destinations (`destinations`) to `const`."""
  class store_const_multiple_action(argument_action):
    def __init__(self, *args, **kwargs):
      super(store_const_multiple_action, self).__init__(
        metavar = None, nargs = 0, const = const, *args, **kwargs
      )

    def __call__(self, parser, namespace, values, option_string = None):
      for destination in destinations:
        setattr(namespace, destination, const)

  return store_const_multiple_action

def store_true_multiple(*destinations):
  """Returns an `argument_action` class that sets multiple argument
  destinations (`destinations`) to `True`."""
  return store_const_multiple(True, *destinations)

def store_false_multiple(*destinations):
  """Returns an `argument_action` class that sets multiple argument
  destinations (`destinations`) to `False`."""
  return store_const_multiple(False, *destinations)

###############################################################################

def process_program_arguments():
  ap = argument_parser(
    description = (
      "Compares two sets of combined performance results and identifies "
      "statistically significant changes."
    )
  )

  ap.add_argument(
    "baseline_input_file",
    help = ("CSV file containing the baseline performance results. The first "
            "two rows should be a header. The 1st header row specifies the "
            "name of each variable, and the 2nd header row specifies the units "
            "for that variable. The baseline results may be a superset of the "
            "observed performance results, but the reverse is not true. The "
            "baseline results must contain data for every datapoint in the "
            "observed performance results."),            
    type = str
  )

  ap.add_argument(
    "observed_input_file",
    help = ("CSV file containing the observed performance results. The first "
            "two rows should be a header. The 1st header row specifies the name "
            "of header row specifies the units for that variable."),
    type = str
  )

  ap.add_argument(
    "-o", "--output-file",
    help = ("The file that results are written to. If `-`, results are "
            "written to stdout."),
    action = "store", type = str, default = "-",
    metavar = "OUTPUT"
  )

  ap.add_argument(
    "-c", "--control-variable",
    help = ("Treat the specified variable as a control variable. This means "
            "it will be filtered out when forming dataset keys. For example, "
            "this could be used to ignore a timestamp variable that is "
            "different in the baseline and observed results. May be specified "
            "multiple times."),
    action = "append", type = str, dest = "control_variables", default = [],
    metavar = "QUANTITY"
  )

  ap.add_argument(
    "-d", "--dependent-variable",
    help = ("Treat the specified three variables as a dependent variable. The "
            "1st variable is the measured quantity, the 2nd is the uncertainty "
            "of the measurement and the 3rd is the sample size. The defaults "
            "are the dependent variables of Thrust's benchmark suite. May be "
            "specified multiple times."),
    action = "append", type = str, dest = "dependent_variables", default = [],
    metavar = "QUANTITY,UNCERTAINTY,SAMPLES"
  )

  ap.add_argument(
    "-t", "--change-threshold",
    help = ("Treat relative changes less than this amount (a percentage) as "
            "statistically insignificant. The default is 5%%."),
    action = "store", type = float, default = 5,
    metavar = "PERCENTAGE"
  )

  ap.add_argument(
    "-p", "--preserve-whitespace",
    help = ("Don't trim leading and trailing whitespace from each CSV cell."),
    action = "store_true", default = False
  )

  ap.add_argument(
    "--output-all-variables",
    help = ("Don't omit original absolute values in output."),
    action = "store_true", default = False
  )

  ap.add_argument(
    "--output-all-datapoints",
    help = ("Don't omit datapoints that are statistically indistinguishable "
            "in output."),
    action = "store_true", default = False
  )

  ap.add_argument(
    "-a", "--output-all",
    help = ("Equivalent to `--output-all-variables --output-all-datapoints`."),
    action = store_true_multiple("output_all_variables", "output_all_datapoints")
  )

  return ap.parse_args()

###############################################################################

def filter_comments(f, s = "#"):
  """Return an iterator to the file `f` which filters out all lines beginning
  with `s`."""
  return filter(lambda line: not line.startswith(s), f)

###############################################################################

class io_manager(object):
  """Manages I/O operations and represents the input data as an `Iterable`
  sequence of `dict`s.

  It is `Iterable` and an `Iterator`. It can be used with `with`.

  Attributes:
    preserve_whitespace (`bool`) :
      If `False`, leading and trailing whitespace is stripped from each CSV cell.
    writer (`csv_dict_writer`) :
      CSV writer object that the output is written to.
    output_file (`file` or `stdout`) :
      The output `file` object.
    baseline_reader (`csv_dict_reader`) :
      CSV reader object for the baseline results.
    observed_reader (`csv_dict_reader`) :
      CSV reader object for the observed results.
    baseline_input_file (`file`) :
      `file` object for the baseline results.
    observed_input_file (`file`) :
      `file` object for the observed results..
    variable_names (`list` of `str`s) :
      Names of the variables, in order. 
    variable_units (`list` of `str`s) :
      Units of the variables, in order. 
  """

  def __init__(self,
               baseline_input_file, observed_input_file,
               output_file,
               preserve_whitespace = False):
    """Read input files and open the output file and construct a new `io_manager`
    object.

    If `preserve_whitespace` is `False`, leading and trailing whitespace is
    stripped from each CSV cell.

    Raises
      AssertionError :
        If `type(preserve_whitespace) != bool`.
    """
    assert type(preserve_whitespace) == bool

    self.preserve_whitespace = preserve_whitespace

    # Open baseline results.
    self.baseline_input_file = open(baseline_input_file)
    self.baseline_reader = csv_dict_reader(
      filter_comments(self.baseline_input_file)
    )

    if not self.preserve_whitespace:
      strip_list(self.baseline_reader.fieldnames)

    self.variable_names = list(self.baseline_reader.fieldnames) # Copy.
    self.variable_units = self.baseline_reader.next()

    if not self.preserve_whitespace:
      strip_dict(self.variable_units)

    # Open observed results.
    self.observed_input_file = open(observed_input_file)
    self.observed_reader = csv_dict_reader(
      filter_comments(self.observed_input_file)
    )

    if not self.preserve_whitespace:
      strip_list(self.observed_reader.fieldnames)

    # Make sure all inputs have the same variables schema.
    assert self.variable_names == self.observed_reader.fieldnames,             \
      "Observed results input file (`" + observed_input_file + "`) "         + \
      "variable schema `" + str(self.observed_reader.fieldnames) + "` does " + \
      "not match the baseline results input file (`" + baseline_input_file   + \
      "`) variable schema `" + str(self.variable_names) + "`."

    # Consume the next row, which should be the second line of the header.
    observed_variable_units = self.observed_reader.next()

    if not self.preserve_whitespace:
      strip_dict(observed_variable_units)

    # Make sure all inputs have the same units schema.
    assert self.variable_units == observed_variable_units,                    \
      "Observed results input file (`" + observed_input_file + "`) "        + \
      "units schema `" + str(observed_variable_units) + "` does not "       + \
      "match the baseline results input file (`" + baseline_input_file      + \
      "`) units schema `" + str(self.variable_units) + "`."

    if   output_file == "-": # Output to stdout.
      self.output_file = stdout
    else:                    # Output to user-specified file.
      self.output_file = open(output_file, "w")

    self.writer = csv_dict_writer(
      self.output_file, fieldnames = self.variable_names
    )

  def __enter__(self):
    """Called upon entering a `with` statement."""
    return self

  def __exit__(self, *args):
    """Called upon exiting a `with` statement."""
    if   self.output_file is stdout:
      self.output_file = None
    elif self.output_file is not None:
      self.output_file.__exit__(*args)

    self.baseline_input_file.__exit__(*args)
    self.observed_input_file.__exit__(*args)

  def append_variable(self, name, units):
    """Add a new variable to the output schema."""
    self.variable_names.append(name)
    self.variable_units.update({name : units})

    # Update CSV writer field names.
    self.writer.fieldnames = self.variable_names

  def insert_variable(self, idx, name, units):
    """Insert a new variable into the output schema at index `idx`."""
    self.variable_names.insert(idx, name)
    self.variable_units.update({name : units})

    # Update CSV writer field names.
    self.writer.fieldnames = self.variable_names

  def remove_variable(self, name):
    """Remove variable from the output schema and return a tuple of the variable
    index and the variable units.

    Raises:
      ValueError : If `name` is not in the output schema.
    """
    # Remove the variable and get its index, which we'll need to remove the
    # corresponding units entry.
    (idx, item) = remove_from_list(self.variable_names, name)

    # Remove the units entry.
    units = self.variable_units.pop(item)

    # Update CSV writer field names.
    self.writer.fieldnames = self.variable_names

    return (idx, units)

  #############################################################################
  # Input Stream.

  def baseline(self):
    """Return an iterator to the baseline results input sequence."""
    return imap(lambda row: strip_dict(row), self.baseline_reader) 

  def observed(self):
    """Return an iterator to the observed results input sequence."""
    return imap(lambda row: strip_dict(row), self.observed_reader) 

  #############################################################################
  # Output.

  def write_header(self):
    """Write the header for the output CSV file."""
    # Write the first line of the header.
    self.writer.writeheader()

    # Write the second line of the header.
    self.writer.writerow(self.variable_units)

  def write(self, d):
    """Write a record (a `dict`) to the output CSV file."""
    self.writer.writerow(d)

###############################################################################

class dependent_variable_parser(object):
  """Parses a `--dependent-variable=AVG,STDEV,TRIALS` command line argument."""

  #############################################################################
  # Grammar

  # Parse a variable_name.
  variable_name_rule = r'[^,]+'

  # Parse a variable classification.        
  dependent_variable_rule = r'(' + variable_name_rule + r')'   \
                          + r','                               \
                          + r'(' + variable_name_rule + r')'   \
                          + r','                               \
                          + r'(' + variable_name_rule + r')'

  engine = regex_compile(dependent_variable_rule)

  #############################################################################

  def __call__(self, s):
    """Parses the string `s` with the form "AVG,STDEV,TRIALS".

    Returns:
      A `measured_variable`. 

    Raises:
      AssertionError : If parsing fails.
    """

    match = self.engine.match(s)

    assert match is not None,                                          \
      "Dependent variable (-d) `" +s+ "` is invalid, the format is " + \
      "`AVG,STDEV,TRIALS`."

    return measured_variable(match.group(1), match.group(2), match.group(3))

###############################################################################

class record_aggregator(object):
  """Consumes and combines records and represents the result as an `Iterable`
  sequence of `dict`s.

  It is `Iterable` and an `Iterator`.

  Attributes:
    dependent_variables (`list` of `measured_variable`s) :
      A list of dependent variables provided on the command line.
    control_variables (`list` of `str`s) :
      A list of control variables provided on the command line.
    dataset (`dict`) :
      A mapping of distinguishing (e.g. control + independent) values (`tuple`s
      of variable-quantity pairs) to `list`s of dependent values (`dict`s from 
      variables to lists of cells).
    in_order_dataset_keys :
      A list of unique dataset keys (e.g. distinguishing variables) in order of
      appearance.
  """

  def __init__(self, dependent_variables, control_variables):
    """Construct a new `record_aggregator` object.

    Raises:
      AssertionError : If parsing of dependent variables fails.
    """
    self.dependent_variables = dependent_variables
    self.control_variables = control_variables

    self.dataset = {}

    self.in_order_dataset_keys = deque()

  #############################################################################
  # Insertion.

  def key_from_dict(self, d):
    """Create a hashable key from a `dict` by filtering out control variables
    and then converting the `dict` to a tuple.

    Raises:
      AssertionError : If any control variable was not found in `d`.
    """
    distinguishing_values = d.copy()

    # Filter out control variables.
    for var in self.control_variables:
      distinguishing_values.pop(var, None)

    return key_from_dict(distinguishing_values)

  def append(self, record):
    """Add `record` to the dataset.

    Raises:
      ValueError : If any `str`-to-numeric conversions fail.
    """
    # The distinguishing variables are the control and independent variables.
    # They form the key for each record in the dataset. Records with the same
    # distinguishing variables are treated as observations of the same
    # datapoint.
    dependent_values = {}

    # To allow the same sample size variable to be used for multiple dependent
    # variables, we don't pop sample size variables until we're done processing
    # all variables.
    sample_size_variables = []

    # Separate the dependent values from the distinguishing variables and
    # perform `str`-to-numeric conversions.
    for var in self.dependent_variables:
      quantity, uncertainty, sample_size, units = var.as_tuple()

      dependent_values[quantity]    = [int_or_float(record.pop(quantity))]
      dependent_values[uncertainty] = [int_or_float(record.pop(uncertainty))]
      dependent_values[sample_size] = [int(record[sample_size])]

      sample_size_variables.append(sample_size)

    # Pop sample size variables.
    for var in sample_size_variables:
      # Allowed to fail, as we may have duplicates.
      record.pop(var, None)

    distinguishing_values = self.key_from_dict(record)

    if distinguishing_values in self.dataset:
      # These distinguishing values already exist, so get the `dict` they're
      # mapped to, look up each key in `dependent_values` in the `dict`, and
      # add the corresponding quantity in `dependent_values` to the list in the
      # the `dict`.
      for var, columns in dependent_values.iteritems():
        self.dataset[distinguishing_values][var] += columns
    else:
      # These distinguishing values aren't in the dataset, so add them and
      # record them in `in_order_dataset_keys`.
      self.dataset[distinguishing_values] = dependent_values
      self.in_order_dataset_keys.append(distinguishing_values)

  #############################################################################
  # Postprocessing.

  def combine_dependent_values(self, dependent_values):
    """Takes a mapping of dependent variables to lists of cells and returns
    a new mapping with the cells combined.

    Raises:
      AssertionError : If class invariants were violated.
    """
    combined_dependent_values = dependent_values.copy()

    for var in self.dependent_variables:
      quantity, uncertainty, sample_size, units = var.as_tuple()

      quantities    = dependent_values[quantity]
      uncertainties = dependent_values[uncertainty]
      sample_sizes  = dependent_values[sample_size]

      if type(sample_size) is list:
        # Sample size hasn't been combined yet.
        assert len(quantities)    == len(uncertainties)                       \
           and len(uncertainties) == len(sample_sizes),                       \
          "Length of quantities list `(" + str(len(quantities)) + ")`, "    + \
          "length of uncertainties list `(" + str(len(uncertainties))       + \
          "),` and length of sample sizes list `(" + str(len(sample_sizes)) + \
          ")` are not the same."
      else:
        # Another dependent variable that uses our sample size has combined it
        # already.
        assert len(quantities) == len(uncertainties),                         \
          "Length of quantities list `(" + str(len(quantities)) + ")` and " + \
          "length of uncertainties list `(" + str(len(uncertainties))       + \
          ")` are not the same."

      # Convert the three separate `list`s into one list of `measured_value`s.
      measured_values = []

      for i in range(len(quantities)):
        mv = measured_value(
          quantities[i], uncertainties[i], sample_sizes[i], units
        )

        measured_values.append(mv)

      # Combine the `measured_value`s.
      combined_sample_size = combine_sample_size(
        measured_values
      )

      combined_arithmetic_mean = combine_arithmetic_mean(
        measured_values, combined_sample_size
      )

      combined_sample_standard_deviation = combine_sample_standard_deviation(
        measured_values, combined_sample_size, combined_arithmetic_mean
      )

      # Round the quantity and uncertainty to the significant digit of
      # uncertainty and insert the combined values into the results.
      sigdig = find_significant_digit(combined_sample_standard_deviation)

#      combined_arithmetic_mean = round_with_int_conversion(
#        combined_arithmetic_mean, sigdig
#      )

#      combined_sample_standard_deviation = round_with_int_conversion(
#        combined_sample_standard_deviation, sigdig
#      )

      combined_dependent_values[quantity]    = combined_arithmetic_mean
      combined_dependent_values[uncertainty] = combined_sample_standard_deviation
      combined_dependent_values[sample_size] = combined_sample_size

    return combined_dependent_values

  ############################################################################# 
  # Output Stream.

  def __iter__(self):
    """Return an iterator to the output sequence of separated distinguishing
    variables and dependent variables (a tuple of two `dict`s).

    This is a requirement for the `Iterable` protocol.
    """
    return self

  def records(self):
    """Return an iterator to the output sequence of CSV rows (`dict`s of
    variables to values).
    """
    return imap(unpack_tuple(lambda dist, dep: merge_dicts(dist, dep)), self)

  def next(self):
    """Produce the components of the next output record - a tuple of two
    `dict`s. The first `dict` is a mapping of distinguishing variables to
    distinguishing values, the second `dict` is a mapping of dependent
    variables to combined dependent values. Combining the two dicts forms a
    CSV row suitable for output.

    This is a requirement for the `Iterator` protocol.

    Raises:
      StopIteration  : If there is no more output.
      AssertionError : If class invariants were violated.
    """
    assert len(self.dataset.keys()) == len(self.in_order_dataset_keys),      \
      "Number of dataset keys (`" + str(len(self.dataset.keys()))          + \
      "`) is not equal to the number of keys in the ordering list (`"      + \
      str(len(self.in_order_dataset_keys)) + "`)."

    if len(self.in_order_dataset_keys) == 0:
      raise StopIteration()

    # Get the next set of distinguishing values and convert them to a `dict`.
    raw_distinguishing_values = self.in_order_dataset_keys.popleft()
    distinguishing_values     = dict(raw_distinguishing_values)

    dependent_values = self.dataset.pop(raw_distinguishing_values)

    combined_dependent_values = self.combine_dependent_values(dependent_values)

    return (distinguishing_values, combined_dependent_values)

  def __getitem__(self, distinguishing_values):
    """Produce the dependent component, a `dict` mapping dependent variables to
    combined dependent values, associated with `distinguishing_values`.

    Args:
      distinguishing_values (`dict`) :
        A `dict` mapping distinguishing variables to distinguishing values.

    Raises:
      KeyError : If `distinguishing_values` is not in the dataset.
    """
    raw_distinguishing_values = self.key_from_dict(distinguishing_values)

    dependent_values = self.dataset[raw_distinguishing_values]

    combined_dependent_values = self.combine_dependent_values(dependent_values)

    return combined_dependent_values

###############################################################################

args = process_program_arguments()

if len(args.dependent_variables) == 0:
  args.dependent_variables = [
    "STL Average Walltime,STL Walltime Uncertainty,STL Trials",
    "STL Average Throughput,STL Throughput Uncertainty,STL Trials",
    "Thrust Average Walltime,Thrust Walltime Uncertainty,Thrust Trials",
    "Thrust Average Throughput,Thrust Throughput Uncertainty,Thrust Trials"
  ]

# Parse dependent variable options.
dependent_variables = []

parse_dependent_variable = dependent_variable_parser()

#if args.dependent_variables is not None:
for var in args.dependent_variables:
  dependent_variables.append(parse_dependent_variable(var))

# Read input files and open the output file.
with io_manager(args.baseline_input_file, 
                args.observed_input_file,
                args.output_file,
                args.preserve_whitespace) as iom:

  # Create record aggregators.
  baseline_ra = record_aggregator(dependent_variables, args.control_variables)
  observed_ra = record_aggregator(dependent_variables, args.control_variables)

  # Duplicate dependent variables: one for baseline results, one for observed
  # results.
  baseline_suffix = " - `{0}`".format(
    args.baseline_input_file
  )
  observed_suffix = " - `{0}`".format(
    args.observed_input_file
  )

  for var in dependent_variables:
    # Remove the existing quantity variable:
    #
    #   [ ..., a, b, c, ... ]
    #             ^- remove b at index i
    #
    (quantity_idx, quantity_units) = iom.remove_variable(var.quantity)

    # If the `--output-all-variables` option was specified, add the new baseline
    # and observed quantity variables. Note that we insert in the reverse of
    # the order we desire (which is baseline then observed):
    #
    #   [ ..., a, b_1, c, ... ]
    #              ^- insert b_1 at index i
    #
    #   [ ..., a, b_0, b_1, c, ... ]
    #              ^- insert b_0 at index i
    #
    if args.output_all_variables:
      iom.insert_variable(
        quantity_idx, var.quantity + observed_suffix, quantity_units
      )
      iom.insert_variable(
        quantity_idx, var.quantity + baseline_suffix, quantity_units
      )

    # Remove the existing uncertainty variable.
    (uncertainty_idx, uncertainty_units) = iom.remove_variable(var.uncertainty)

    # If the `--output-all-variables` option was specified, add the new baseline
    # and observed uncertainty variables.
    if args.output_all_variables:
      iom.insert_variable(
        uncertainty_idx, var.uncertainty + observed_suffix, uncertainty_units
      )
      iom.insert_variable(
        uncertainty_idx, var.uncertainty + baseline_suffix, uncertainty_units
      )

    try:
      # Remove the existing sample size variable.
      (sample_size_idx, sample_size_units) = iom.remove_variable(var.sample_size)

      # If the `--output-all-variables` option was specified, add the new
      # baseline and observed sample size variables.
      if args.output_all_variables:
        iom.insert_variable(
          sample_size_idx, var.sample_size + observed_suffix, sample_size_units
        )
        iom.insert_variable(
          sample_size_idx, var.sample_size + baseline_suffix, sample_size_units
        )
    except ValueError:
      # This is alright, because dependent variables may share the same sample
      # size variable.
      pass

  for var in args.control_variables:
    iom.remove_variable(var)

  # Add change variables.
  absolute_change_suffix = " - Change (`{0}` - `{1}`)".format(
    args.observed_input_file, args.baseline_input_file
  )

  percent_change_suffix = " - % Change (`{0}` to `{1}`)".format(
    args.observed_input_file, args.baseline_input_file
  )

  for var in dependent_variables:
    iom.append_variable(var.quantity + absolute_change_suffix, var.units)
    iom.append_variable(var.uncertainty + absolute_change_suffix, var.units)
    iom.append_variable(var.quantity + percent_change_suffix, "")
    iom.append_variable(var.uncertainty + percent_change_suffix, "")

  # Add all baseline input data to the `record_aggregator`.
  for record in iom.baseline():
    baseline_ra.append(record)
  
  for record in iom.observed():
    observed_ra.append(record)

  iom.write_header()

  # Compare and output results.
  for distinguishing_values, observed_dependent_values in observed_ra:
    try:
      baseline_dependent_values = baseline_ra[distinguishing_values]
    except KeyError: 
      assert False,                                                           \
        "Distinguishing value `"                                            + \
        str(baseline_ra.key_from_dict(distinguishing_values))               + \
        "` was not found in the baseline results."

    statistically_significant_change = False

    record = distinguishing_values.copy()

    # Compute changes, add the values and changes to the record, and identify
    # changes that are statistically significant.
    for var in dependent_variables:
      # Compute changes.
      baseline_quantity    = baseline_dependent_values[var.quantity]
      baseline_uncertainty = baseline_dependent_values[var.uncertainty]
      baseline_sample_size = baseline_dependent_values[var.sample_size]

      observed_quantity    = observed_dependent_values[var.quantity]
      observed_uncertainty = observed_dependent_values[var.uncertainty]
      observed_sample_size = observed_dependent_values[var.sample_size]

      (abs_change, abs_change_unc, per_change, per_change_unc) = \
        percent_change_uncertainty(
          baseline_quantity, baseline_uncertainty,
          observed_quantity, observed_uncertainty
        )

      # Round the change quantities and uncertainties to the significant digit
      # of uncertainty.
      try:
        abs_change_sigdig = max(
          find_significant_digit(abs_change),
          find_significant_digit(abs_change_unc),
        )

#        abs_change     = round_with_int_conversion(
#          abs_change,     abs_change_sigdig
#        )
#        abs_change_unc = round_with_int_conversion(
#          abs_change_unc, abs_change_sigdig
#        )
      except:
        # Any value errors should be due to NaNs returned by
        # `percent_change_uncertainty` because quantities or change in
        # quantities was 0. We can ignore these.
        pass

      try:
        per_change_sigdig = max(
          find_significant_digit(per_change),
          find_significant_digit(per_change_unc)
        )

#        per_change     = round_with_int_conversion(
#          per_change,     per_change_sigdig
#        )
#        per_change_unc = round_with_int_conversion(
#          per_change_unc, per_change_sigdig
#        )
      except:
        # Any value errors should be due to NaNs returned by
        # `percent_change_uncertainty` because quantities or change in
        # quantities was 0. We can ignore these.
        pass

      # Add the values (if the `--output-all-variables` option was specified)
      # and the changes to the record. Note that the record's schema is
      # different from the original schema. If multiple dependent variables
      # share the same sample size variable, it's fine - they will overwrite
      # each other, but with the same value.
      if args.output_all_variables:
        record[var.quantity + baseline_suffix]         = baseline_quantity
        record[var.uncertainty + baseline_suffix]      = baseline_uncertainty
        record[var.sample_size + baseline_suffix]      = baseline_sample_size
        record[var.quantity + observed_suffix]         = observed_quantity
        record[var.uncertainty + observed_suffix]      = observed_uncertainty
        record[var.sample_size + observed_suffix]      = observed_sample_size

      record[var.quantity + absolute_change_suffix]    = abs_change
      record[var.uncertainty + absolute_change_suffix] = abs_change_unc
      record[var.quantity + percent_change_suffix]     = per_change
      record[var.uncertainty + percent_change_suffix]  = per_change_unc

      # If the range of uncertainties overlap don't overlap and the percentage
      # change is greater than the change threshold, then change is
      # statistically significant.
      overlap = ranges_overlap_uncertainty(
          baseline_quantity, baseline_uncertainty,
          observed_quantity, observed_uncertainty
      )
      if not overlap and per_change >= args.change_threshold:
        statistically_significant_change = True

    # Print the record if a statistically significant change was found or if the
    # `--output-all-datapoints` option was specified.
    if args.output_all_datapoints or statistically_significant_change:
      iom.write(record)