Spaces:
Runtime error
Runtime error
File size: 6,534 Bytes
28958dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/tuple.h>
#include <thrust/extrema.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cmath>
#include "include/timer.h"
// Compute an approximate Voronoi Diagram with a Jump Flooding Algorithm (JFA)
//
// References
// http://en.wikipedia.org/wiki/Voronoi_diagram
// http://www.comp.nus.edu.sg/~tants/jfa.html
// http://www.utdallas.edu/~guodongrong/Papers/Dissertation.pdf
//
// Thanks to David Coeurjolly for contributing this example
// minFunctor
// Tuple = <seeds,seeds + k,seeds + m*k, seeds - k,
// seeds - m*k, seeds+ k+m*k,seeds + k-m*k,
// seeds- k+m*k,seeds - k+m*k, i>
struct minFunctor
{
int m, n, k;
__host__ __device__
minFunctor(int m, int n, int k)
: m(m), n(n), k(k) {}
//To decide I have to change my current Voronoi site
__host__ __device__
int minVoro(int x_i, int y_i, int p, int q)
{
if (q == m*n)
return p;
// coordinates of points p and q
int y_q = q / m;
int x_q = q - y_q * m;
int y_p = p / m;
int x_p = p - y_p * m;
// squared distances
int d_iq = (x_i-x_q) * (x_i-x_q) + (y_i-y_q) * (y_i-y_q);
int d_ip = (x_i-x_p) * (x_i-x_p) + (y_i-y_p) * (y_i-y_p);
if (d_iq < d_ip)
return q; // q is closer
else
return p;
}
//For each point p+{-k,0,k}, we keep the Site with minimum distance
template <typename Tuple>
__host__ __device__
int operator()(const Tuple &t)
{
//Current point and site
int i = thrust::get<9>(t);
int v = thrust::get<0>(t);
//Current point coordinates
int y = i / m;
int x = i - y * m;
if (x >= k)
{
v = minVoro(x, y, v, thrust::get<3>(t));
if (y >= k)
v = minVoro(x, y, v, thrust::get<8>(t));
if (y + k < n)
v = minVoro(x, y, v, thrust::get<7>(t));
}
if (x + k < m)
{
v = minVoro(x, y, v, thrust::get<1>(t));
if (y >= k)
v = minVoro(x, y, v, thrust::get<6>(t));
if (y + k < n)
v = minVoro(x, y, v, thrust::get<5>(t));
}
if (y >= k)
v = minVoro(x, y, v, thrust::get<4>(t));
if (y + k < n)
v = minVoro(x, y, v, thrust::get<2>(t));
//global return
return v;
}
};
// print an M-by-N array
template <typename T>
void print(int m, int n, const thrust::device_vector<T>& d_data)
{
thrust::host_vector<T> h_data = d_data;
for(int i = 0; i < m; i++)
{
for(int j = 0; j < n; j++)
std::cout << std::setw(4) << h_data[i * n + j] << " ";
std::cout << "\n";
}
}
void generate_random_sites(thrust::host_vector<int> &t, int Nb, int m, int n)
{
thrust::default_random_engine rng;
thrust::uniform_int_distribution<int> dist(0, m * n - 1);
for(int k = 0; k < Nb; k++)
{
int index = dist(rng);
t[index] = index + 1;
}
}
//Export the tab to PGM image format
void vector_to_pgm(thrust::host_vector<int> &t, int m, int n, const char *out)
{
assert(static_cast<int>(t.size()) == m * n &&
"Vector size does not match image dims.");
std::fstream f(out, std::fstream::out);
f << "P2\n";
f << m << " " << n << "\n";
f << "253\n";
//Hash function to map values to [0,255]
auto to_grey_level = [](int in_value) -> int
{
return (71 * in_value) % 253;
};
for (int value : t)
{
f << to_grey_level(value) << " ";
}
f << "\n";
f.close();
}
/************Main Jfa loop********************/
// Perform a jump with step k
void jfa(thrust::device_vector<int>& in,thrust::device_vector<int>& out, unsigned int k, int m, int n)
{
thrust::transform(
thrust::make_zip_iterator(
thrust::make_tuple(in.begin(),
in.begin() + k,
in.begin() + m*k,
in.begin() - k,
in.begin() - m*k,
in.begin() + k+m*k,
in.begin() + k-m*k,
in.begin() - k+m*k,
in.begin() - k-m*k,
thrust::counting_iterator<int>(0))),
thrust::make_zip_iterator(
thrust::make_tuple(in.begin(),
in.begin() + k,
in.begin() + m*k,
in.begin() - k,
in.begin() - m*k,
in.begin() + k+m*k,
in.begin() + k-m*k,
in.begin() - k+m*k,
in.begin() - k-m*k,
thrust::counting_iterator<int>(0)))+ n*m,
out.begin(),
minFunctor(m,n,k));
}
/********************************************/
void display_time(timer& t)
{
std::cout << " ( "<< 1e3 * t.elapsed() << "ms )" << std::endl;
}
int main(void)
{
int m = 2048; // number of rows
int n = 2048; // number of columns
int s = 1000; // number of sites
timer t;
//Host vector to encode a 2D image
std::cout << "[Inititialize " << m << "x" << n << " Image]" << std::endl;
t.restart();
thrust::host_vector<int> seeds_host(m*n, m*n);
generate_random_sites(seeds_host,s,m,n);
display_time(t);
std::cout<<"[Copy to Device]" << std::endl;
t.restart();
thrust::device_vector<int> seeds = seeds_host;
thrust::device_vector<int> temp(seeds);
display_time(t);
//JFA+1 : before entering the log(n) loop, we perform a jump with k=1
std::cout<<"[JFA stepping]" << std::endl;
t.restart();
jfa(seeds,temp,1,m,n);
seeds.swap(temp);
//JFA : main loop with k=n/2, n/4, ..., 1
for(int k = thrust::max(m,n) / 2; k > 0; k /= 2)
{
jfa(seeds,temp,k,m,n);
seeds.swap(temp);
}
display_time(t);
std::cout <<" ( " << seeds.size() / (1e6 * t.elapsed()) << " MPixel/s ) " << std::endl;
std::cout << "[Device to Host Copy]" << std::endl;
t.restart();
seeds_host = seeds;
display_time(t);
std::cout << "[PGM Export]" << std::endl;
t.restart();
vector_to_pgm(seeds_host, m, n, "discrete_voronoi.pgm");
display_time(t);
return 0;
}
|