Spaces:
Runtime error
Runtime error
File size: 8,664 Bytes
28958dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
#include "parallel.h"
#include <list>
#include <thread>
#include <condition_variable>
#include <vector>
#include <cassert>
// From https://github.com/mmp/pbrt-v3/blob/master/src/core/parallel.cpp
static std::vector<std::thread> threads;
static bool shutdownThreads = false;
struct ParallelForLoop;
static ParallelForLoop *workList = nullptr;
static std::mutex workListMutex;
struct ParallelForLoop {
ParallelForLoop(std::function<void(int64_t)> func1D, int64_t maxIndex, int chunkSize)
: func1D(std::move(func1D)), maxIndex(maxIndex), chunkSize(chunkSize) {
}
ParallelForLoop(const std::function<void(Vector2i)> &f, const Vector2i count)
: func2D(f), maxIndex(count[0] * count[1]), chunkSize(1) {
nX = count[0];
}
std::function<void(int64_t)> func1D;
std::function<void(Vector2i)> func2D;
const int64_t maxIndex;
const int chunkSize;
int64_t nextIndex = 0;
int activeWorkers = 0;
ParallelForLoop *next = nullptr;
int nX = -1;
bool Finished() const {
return nextIndex >= maxIndex && activeWorkers == 0;
}
};
void Barrier::Wait() {
std::unique_lock<std::mutex> lock(mutex);
assert(count > 0);
if (--count == 0) {
// This is the last thread to reach the barrier; wake up all of the
// other ones before exiting.
cv.notify_all();
} else {
// Otherwise there are still threads that haven't reached it. Give
// up the lock and wait to be notified.
cv.wait(lock, [this] { return count == 0; });
}
}
static std::condition_variable workListCondition;
static void worker_thread_func(const int tIndex, std::shared_ptr<Barrier> barrier) {
ThreadIndex = tIndex;
// The main thread sets up a barrier so that it can be sure that all
// workers have called ProfilerWorkerThreadInit() before it continues
// (and actually starts the profiling system).
barrier->Wait();
// Release our reference to the Barrier so that it's freed once all of
// the threads have cleared it.
barrier.reset();
std::unique_lock<std::mutex> lock(workListMutex);
while (!shutdownThreads) {
if (!workList) {
// Sleep until there are more tasks to run
workListCondition.wait(lock);
} else {
// Get work from _workList_ and run loop iterations
ParallelForLoop &loop = *workList;
// Run a chunk of loop iterations for _loop_
// Find the set of loop iterations to run next
int64_t indexStart = loop.nextIndex;
int64_t indexEnd = std::min(indexStart + loop.chunkSize, loop.maxIndex);
// Update _loop_ to reflect iterations this thread will run
loop.nextIndex = indexEnd;
if (loop.nextIndex == loop.maxIndex)
workList = loop.next;
loop.activeWorkers++;
// Run loop indices in _[indexStart, indexEnd)_
lock.unlock();
for (int64_t index = indexStart; index < indexEnd; ++index) {
if (loop.func1D) {
loop.func1D(index);
}
// Handle other types of loops
else {
assert(loop.func2D != nullptr);
loop.func2D(Vector2i{int(index % loop.nX),
int(index / loop.nX)});
}
}
lock.lock();
// Update _loop_ to reflect completion of iterations
loop.activeWorkers--;
if (loop.Finished()) {
workListCondition.notify_all();
}
}
}
}
void parallel_for_host(const std::function<void(int64_t)> &func,
int64_t count,
int chunkSize) {
// Run iterations immediately if not using threads or if _count_ is small
if (threads.empty() || count < chunkSize) {
for (int64_t i = 0; i < count; ++i) {
func(i);
}
return;
}
// Create and enqueue _ParallelForLoop_ for this loop
ParallelForLoop loop(func, count, chunkSize);
workListMutex.lock();
loop.next = workList;
workList = &loop;
workListMutex.unlock();
// Notify worker threads of work to be done
std::unique_lock<std::mutex> lock(workListMutex);
workListCondition.notify_all();
// Help out with parallel loop iterations in the current thread
while (!loop.Finished()) {
// Run a chunk of loop iterations for _loop_
// Find the set of loop iterations to run next
int64_t indexStart = loop.nextIndex;
int64_t indexEnd = std::min(indexStart + loop.chunkSize, loop.maxIndex);
// Update _loop_ to reflect iterations this thread will run
loop.nextIndex = indexEnd;
if (loop.nextIndex == loop.maxIndex) {
workList = loop.next;
}
loop.activeWorkers++;
// Run loop indices in _[indexStart, indexEnd)_
lock.unlock();
for (int64_t index = indexStart; index < indexEnd; ++index) {
if (loop.func1D) {
loop.func1D(index);
}
// Handle other types of loops
else {
assert(loop.func2D != nullptr);
loop.func2D(Vector2i{int(index % loop.nX),
int(index / loop.nX)});
}
}
lock.lock();
// Update _loop_ to reflect completion of iterations
loop.activeWorkers--;
}
}
thread_local int ThreadIndex;
void parallel_for_host(
std::function<void(Vector2i)> func, const Vector2i count) {
// Launch worker threads if needed
if (threads.empty() || count.x * count.y <= 1) {
for (int y = 0; y < count.y; ++y) {
for (int x = 0; x < count.x; ++x) {
func(Vector2i{x, y});
}
}
return;
}
ParallelForLoop loop(std::move(func), count);
{
std::lock_guard<std::mutex> lock(workListMutex);
loop.next = workList;
workList = &loop;
}
std::unique_lock<std::mutex> lock(workListMutex);
workListCondition.notify_all();
// Help out with parallel loop iterations in the current thread
while (!loop.Finished()) {
// Run a chunk of loop iterations for _loop_
// Find the set of loop iterations to run next
int64_t indexStart = loop.nextIndex;
int64_t indexEnd = std::min(indexStart + loop.chunkSize, loop.maxIndex);
// Update _loop_ to reflect iterations this thread will run
loop.nextIndex = indexEnd;
if (loop.nextIndex == loop.maxIndex) {
workList = loop.next;
}
loop.activeWorkers++;
// Run loop indices in _[indexStart, indexEnd)_
lock.unlock();
for (int64_t index = indexStart; index < indexEnd; ++index) {
if (loop.func1D) {
loop.func1D(index);
}
// Handle other types of loops
else {
assert(loop.func2D != nullptr);
loop.func2D(Vector2i{int(index % loop.nX),
int(index / loop.nX)});
}
}
lock.lock();
// Update _loop_ to reflect completion of iterations
loop.activeWorkers--;
}
}
int num_system_cores() {
// return 1;
int ret = std::thread::hardware_concurrency();
if (ret == 0) {
return 16;
}
return ret;
}
void parallel_init() {
assert(threads.size() == 0);
int nThreads = num_system_cores();
ThreadIndex = 0;
// Create a barrier so that we can be sure all worker threads get past
// their call to ProfilerWorkerThreadInit() before we return from this
// function. In turn, we can be sure that the profiling system isn't
// started until after all worker threads have done that.
std::shared_ptr<Barrier> barrier = std::make_shared<Barrier>(nThreads);
// Launch one fewer worker thread than the total number we want doing
// work, since the main thread helps out, too.
for (int i = 0; i < nThreads - 1; ++i) {
threads.push_back(std::thread(worker_thread_func, i + 1, barrier));
}
barrier->Wait();
}
void parallel_cleanup() {
if (threads.empty()) {
return;
}
{
std::lock_guard<std::mutex> lock(workListMutex);
shutdownThreads = true;
workListCondition.notify_all();
}
for (std::thread &thread : threads) {
thread.join();
}
threads.erase(threads.begin(), threads.end());
shutdownThreads = false;
}
|