File size: 8,921 Bytes
99243b4
 
 
 
 
 
 
 
 
 
 
9b6b1a2
99243b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e6dd19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99243b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dbb9c8
99243b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9124d49
 
99243b4
 
9124d49
 
99243b4
 
9124d49
 
 
 
 
 
 
 
99243b4
 
 
 
 
 
 
 
 
 
 
 
 
0dbb9c8
99243b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e6dd19
99243b4
 
 
 
 
 
 
 
9124d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99243b4
 
 
 
 
 
 
 
9124d49
 
99243b4
9124d49
99243b4
 
 
9124d49
99243b4
 
 
 
9124d49
 
 
 
 
 
 
 
99243b4
 
f7662a1
99243b4
f7662a1
 
 
99243b4
 
 
8e6dd19
 
 
99243b4
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pathlib
import sys
from typing import Callable

if os.environ.get('SYSTEM') == 'spaces':
    os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/fused_act.py")
    os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/upfirdn2d.py")

sys.path.insert(0, 'DualStyleGAN')

import dlib
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torchvision.transforms as T
from model.dualstylegan import DualStyleGAN
from model.encoder.align_all_parallel import align_face
from model.encoder.psp import pSp
from util import load_image, visualize

ORIGINAL_REPO_URL = 'https://github.com/williamyang1991/DualStyleGAN'
TITLE = 'williamyang1991/DualStyleGAN'
DESCRIPTION = f"""A demo for {ORIGINAL_REPO_URL}

You can select style images for cartoon from the table below.

The style image index should be in the following range:

- cartoon: 0-316
- caricature: 0-198
- anime: 0-173
- arcane: 0-99
- comic: 0-100
- pixar: 0-121
- slamdunk: 0-119
"""
ARTICLE = '![cartoon style images](https://user-images.githubusercontent.com/18130694/159848447-96fa5194-32ec-42f0-945a-3b1958bf6e5e.jpg)'

TOKEN = os.environ['TOKEN']

MODEL_REPO = 'hysts/DualStyleGAN'


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    parser.add_argument('--allow-screenshot', action='store_true')
    return parser.parse_args()


def load_encoder(device: torch.device) -> nn.Module:
    ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                                'models/encoder.pt',
                                                use_auth_token=TOKEN)
    ckpt = torch.load(ckpt_path, map_location='cpu')
    opts = ckpt['opts']
    opts['device'] = device.type
    opts['checkpoint_path'] = ckpt_path
    opts = argparse.Namespace(**opts)
    model = pSp(opts)
    model.to(device)
    model.eval()
    return model


def load_generator(style_type: str, device: torch.device) -> nn.Module:
    model = DualStyleGAN(1024, 512, 8, 2, res_index=6)
    ckpt_path = huggingface_hub.hf_hub_download(
        MODEL_REPO, f'models/{style_type}/generator.pt', use_auth_token=TOKEN)
    ckpt = torch.load(ckpt_path, map_location='cpu')
    model.load_state_dict(ckpt['g_ema'])
    model.to(device)
    model.eval()
    return model


def load_exstylecode(style_type: str) -> dict[str, np.ndarray]:
    if style_type in ['cartoon', 'caricature', 'anime']:
        filename = 'refined_exstyle_code.npy'
    else:
        filename = 'exstyle_code.npy'
    path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                           f'models/{style_type}/{filename}',
                                           use_auth_token=TOKEN)
    exstyles = np.load(path, allow_pickle=True).item()
    return exstyles


def create_transform() -> Callable:
    transform = T.Compose([
        T.Resize(256),
        T.CenterCrop(256),
        T.ToTensor(),
        T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
    ])
    return transform


def create_dlib_landmark_model():
    path = huggingface_hub.hf_hub_download(
        'hysts/dlib_face_landmark_model',
        'shape_predictor_68_face_landmarks.dat',
        use_auth_token=TOKEN)
    return dlib.shape_predictor(path)


def denormalize(tensor: torch.Tensor) -> torch.Tensor:
    return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8)


def postprocess(tensor: torch.Tensor) -> PIL.Image.Image:
    tensor = denormalize(tensor)
    image = tensor.cpu().numpy().transpose(1, 2, 0)
    return PIL.Image.fromarray(image)


@torch.inference_mode()
def run(
    image,
    style_type: str,
    style_id: float,
    dlib_landmark_model,
    encoder: nn.Module,
    generator_dict: dict[str, nn.Module],
    exstyle_dict: dict[str, dict[str, np.ndarray]],
    transform: Callable,
    device: torch.device,
) -> tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image,
           PIL.Image, PIL.Image]:
    generator = generator_dict[style_type]
    exstyles = exstyle_dict[style_type]

    style_id = int(style_id)
    style_id = min(max(0, style_id), len(exstyles) - 1)

    stylename = list(exstyles.keys())[style_id]

    image = align_face(filepath=image.name, predictor=dlib_landmark_model)
    input_data = transform(image).unsqueeze(0).to(device)

    img_rec, instyle = encoder(input_data,
                               randomize_noise=False,
                               return_latents=True,
                               z_plus_latent=True,
                               return_z_plus_latent=True,
                               resize=False)
    img_rec = torch.clamp(img_rec.detach(), -1, 1)

    latent = torch.tensor(exstyles[stylename]).repeat(2, 1, 1).to(device)
    # latent[0] for both color and structrue transfer and latent[1] for only structrue transfer
    latent[1, 7:18] = instyle[0, 7:18]
    exstyle = generator.generator.style(
        latent.reshape(latent.shape[0] * latent.shape[1],
                       latent.shape[2])).reshape(latent.shape)

    img_gen, _ = generator([instyle.repeat(2, 1, 1)],
                           exstyle,
                           z_plus_latent=True,
                           truncation=0.7,
                           truncation_latent=0,
                           use_res=True,
                           interp_weights=[0.6] * 7 + [1] * 11)
    img_gen = torch.clamp(img_gen.detach(), -1, 1)
    # deactivate color-related layers by setting w_c = 0
    img_gen2, _ = generator([instyle],
                            exstyle[0:1],
                            z_plus_latent=True,
                            truncation=0.7,
                            truncation_latent=0,
                            use_res=True,
                            interp_weights=[0.6] * 7 + [0] * 11)
    img_gen2 = torch.clamp(img_gen2.detach(), -1, 1)

    img_rec = postprocess(img_rec[0])
    img_gen0 = postprocess(img_gen[0])
    img_gen1 = postprocess(img_gen[1])
    img_gen2 = postprocess(img_gen2[0])

    return image, img_rec, img_gen0, img_gen1, img_gen2


def main():
    gr.close_all()

    args = parse_args()
    device = torch.device(args.device)

    style_types = [
        'cartoon',
        'caricature',
        'anime',
        'arcane',
        'comic',
        'pixar',
        'slamdunk',
    ]
    generator_dict = {
        style_type: load_generator(style_type, device)
        for style_type in style_types
    }
    exstyle_dict = {
        style_type: load_exstylecode(style_type)
        for style_type in style_types
    }

    dlib_landmark_model = create_dlib_landmark_model()
    encoder = load_encoder(device)
    transform = create_transform()

    func = functools.partial(run,
                             dlib_landmark_model=dlib_landmark_model,
                             encoder=encoder,
                             generator_dict=generator_dict,
                             exstyle_dict=exstyle_dict,
                             transform=transform,
                             device=device)
    func = functools.update_wrapper(func, run)

    image_paths = sorted(pathlib.Path('images').glob('*'))
    examples = [[path.as_posix(), 'cartoon', 26] for path in image_paths]

    gr.Interface(
        func,
        [
            gr.inputs.Image(type='file', label='Input Image'),
            gr.inputs.Radio(
                style_types,
                type='value',
                default='cartoon',
                label='Style Type',
            ),
            gr.inputs.Number(default=26, label='Style Image Index'),
        ],
        [
            gr.outputs.Image(type='pil', label='Aligned Face'),
            gr.outputs.Image(type='pil', label='Reconstructed'),
            gr.outputs.Image(type='pil', label='Result 1'),
            gr.outputs.Image(type='pil', label='Result 2'),
            gr.outputs.Image(type='pil', label='Result 3'),
        ],
        examples=examples,
        theme=args.theme,
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        allow_screenshot=args.allow_screenshot,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()