File size: 7,537 Bytes
73099b9
 
 
 
e38549b
 
73099b9
bd312c9
73099b9
 
 
 
 
 
 
 
 
b98a8ac
73099b9
 
 
58dfe83
 
 
73099b9
 
 
 
 
e38549b
73099b9
 
 
9735cfa
 
 
73099b9
b5f45ec
73099b9
b5f45ec
73099b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38549b
 
 
 
 
 
 
73099b9
 
 
e38549b
73099b9
 
 
 
 
 
 
 
9735cfa
b5f45ec
 
 
 
 
 
9735cfa
b5f45ec
 
 
 
 
 
73099b9
 
 
 
 
 
 
 
 
 
 
 
 
 
e38549b
73099b9
 
 
 
 
 
 
 
 
 
 
 
 
e38549b
73099b9
 
 
9735cfa
 
b5f45ec
 
9735cfa
 
 
73099b9
 
 
 
 
 
 
 
 
 
 
9735cfa
 
b5f45ec
 
 
9735cfa
b5f45ec
 
 
9735cfa
73099b9
 
9735cfa
 
 
 
 
 
 
73099b9
 
 
 
 
 
 
 
b5f45ec
 
 
 
 
 
9735cfa
b5f45ec
73099b9
 
 
 
 
 
 
b5f45ec
73099b9
 
 
 
b5f45ec
9735cfa
73099b9
 
 
b5f45ec
 
73099b9
 
 
 
 
 
 
9735cfa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import annotations

import argparse
import os
import pathlib
import subprocess
import sys
from typing import Callable

import dlib
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torchvision.transforms as T

if os.getenv('SYSTEM') == 'spaces':
    os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/fused_act.py")
    os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/upfirdn2d.py")

app_dir = pathlib.Path(__file__).parent
submodule_dir = app_dir / 'DualStyleGAN'
sys.path.insert(0, submodule_dir.as_posix())

from model.dualstylegan import DualStyleGAN
from model.encoder.align_all_parallel import align_face
from model.encoder.psp import pSp

MODEL_REPO = 'CVPR/DualStyleGAN'


class Model:
    def __init__(self):
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')
        self.landmark_model = self._create_dlib_landmark_model()
        self.encoder_dict = self._load_encoder()
        self.transform = self._create_transform()
        self.encoder_type = 'z+'

        self.style_types = [
            'cartoon',
            'caricature',
            'anime',
            'arcane',
            'comic',
            'pixar',
            'slamdunk',
        ]
        self.generator_dict = {
            style_type: self._load_generator(style_type)
            for style_type in self.style_types
        }
        self.exstyle_dict = {
            style_type: self._load_exstylecode(style_type)
            for style_type in self.style_types
        }

    @staticmethod
    def _create_dlib_landmark_model():
        url = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2'
        path = pathlib.Path('shape_predictor_68_face_landmarks.dat')
        if not path.exists():
            bz2_path = 'shape_predictor_68_face_landmarks.dat.bz2'
            torch.hub.download_url_to_file(url, bz2_path)
            subprocess.run(f'bunzip2 -d {bz2_path}'.split())
        return dlib.shape_predictor(path.as_posix())

    def _load_encoder(self) -> nn.Module:
        ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                                    'models/encoder.pt')
        ckpt = torch.load(ckpt_path, map_location='cpu')
        opts = ckpt['opts']
        opts['device'] = self.device.type
        opts['checkpoint_path'] = ckpt_path
        opts = argparse.Namespace(**opts)
        model = pSp(opts)
        model.to(self.device)
        model.eval()

        ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                                    'models/encoder_wplus.pt')
        ckpt = torch.load(ckpt_path, map_location='cpu')
        opts = ckpt['opts']
        opts['device'] = self.device.type
        opts['checkpoint_path'] = ckpt_path
        opts['output_size'] = 1024
        opts = argparse.Namespace(**opts)
        model2 = pSp(opts)
        model2.to(self.device)
        model2.eval()

        return {'z+': model, 'w+': model2}

    @staticmethod
    def _create_transform() -> Callable:
        transform = T.Compose([
            T.Resize(256),
            T.CenterCrop(256),
            T.ToTensor(),
            T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
        ])
        return transform

    def _load_generator(self, style_type: str) -> nn.Module:
        model = DualStyleGAN(1024, 512, 8, 2, res_index=6)
        ckpt_path = huggingface_hub.hf_hub_download(
            MODEL_REPO, f'models/{style_type}/generator.pt')
        ckpt = torch.load(ckpt_path, map_location='cpu')
        model.load_state_dict(ckpt['g_ema'])
        model.to(self.device)
        model.eval()
        return model

    @staticmethod
    def _load_exstylecode(style_type: str) -> dict[str, np.ndarray]:
        if style_type in ['cartoon', 'caricature', 'anime']:
            filename = 'refined_exstyle_code.npy'
        else:
            filename = 'exstyle_code.npy'
        path = huggingface_hub.hf_hub_download(
            MODEL_REPO, f'models/{style_type}/{filename}')
        exstyles = np.load(path, allow_pickle=True).item()
        return exstyles

    def detect_and_align_face(self, image_path) -> np.ndarray:
        image = align_face(filepath=image_path, predictor=self.landmark_model)
        x, y = np.random.randint(255), np.random.randint(255)
        r, g, b = image.getpixel((x, y))
        image.putpixel(
            (x, y), (r, g + 1, b)
        )  # trick to make sure run reconstruct_face() once any input setting changes
        return image

    @staticmethod
    def denormalize(tensor: torch.Tensor) -> torch.Tensor:
        return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8)

    def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
        tensor = self.denormalize(tensor)
        return tensor.cpu().numpy().transpose(1, 2, 0)

    @torch.inference_mode()
    def reconstruct_face(self, image: np.ndarray,
                         encoder_type: str) -> tuple[np.ndarray, torch.Tensor]:
        if encoder_type == 'Z+ encoder (better stylization)':
            self.encoder_type = 'z+'
            z_plus_latent = True
            return_z_plus_latent = True
        else:
            self.encoder_type = 'w+'
            z_plus_latent = False
            return_z_plus_latent = False
        image = PIL.Image.fromarray(image)
        input_data = self.transform(image).unsqueeze(0).to(self.device)
        img_rec, instyle = self.encoder_dict[self.encoder_type](
            input_data,
            randomize_noise=False,
            return_latents=True,
            z_plus_latent=z_plus_latent,
            return_z_plus_latent=return_z_plus_latent,
            resize=False)
        img_rec = torch.clamp(img_rec.detach(), -1, 1)
        img_rec = self.postprocess(img_rec[0])
        return img_rec, instyle

    @torch.inference_mode()
    def generate(self, style_type: str, style_id: int, structure_weight: float,
                 color_weight: float, structure_only: bool,
                 instyle: torch.Tensor) -> np.ndarray:

        if self.encoder_type == 'z+':
            z_plus_latent = True
            input_is_latent = False
        else:
            z_plus_latent = False
            input_is_latent = True

        generator = self.generator_dict[style_type]
        exstyles = self.exstyle_dict[style_type]

        style_id = int(style_id)
        stylename = list(exstyles.keys())[style_id]

        latent = torch.tensor(exstyles[stylename]).to(self.device)
        if structure_only and self.encoder_type == 'z+':
            latent[0, 7:18] = instyle[0, 7:18]
        exstyle = generator.generator.style(
            latent.reshape(latent.shape[0] * latent.shape[1],
                           latent.shape[2])).reshape(latent.shape)
        if structure_only and self.encoder_type == 'w+':
            exstyle[:, 7:18] = instyle[:, 7:18]

        img_gen, _ = generator([instyle],
                               exstyle,
                               input_is_latent=input_is_latent,
                               z_plus_latent=z_plus_latent,
                               truncation=0.7,
                               truncation_latent=0,
                               use_res=True,
                               interp_weights=[structure_weight] * 7 +
                               [color_weight] * 11)
        img_gen = torch.clamp(img_gen.detach(), -1, 1)
        img_gen = self.postprocess(img_gen[0])
        return img_gen