Spaces:
Runtime error
Runtime error
File size: 10,739 Bytes
0392181 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
# --------------------------------------------------------
# OpenVQA
# Written by Yuhao Cui https://github.com/cuiyuhao1996
# --------------------------------------------------------
import os, torch, datetime, shutil, time
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as Data
from openvqa.models.model_loader import ModelLoader
from openvqa.utils.optim import get_optim, adjust_lr
from utils.test_engine import test_engine, ckpt_proc
from utils.extract_engine import extract_engine
def train_engine(__C, dataset, dataset_eval=None):
data_size = dataset.data_size
token_size = dataset.token_size
ans_size = dataset.ans_size
pretrained_emb = dataset.pretrained_emb
net = ModelLoader(__C).Net(
__C,
pretrained_emb,
token_size,
ans_size
)
net.cuda()
net.train()
if __C.N_GPU > 1:
net = nn.DataParallel(net, device_ids=__C.DEVICES)
# Define Loss Function
loss_fn = eval('torch.nn.' + __C.LOSS_FUNC_NAME_DICT[__C.LOSS_FUNC] + "(reduction='" + __C.LOSS_REDUCTION + "').cuda()")
# Load checkpoint if resume training
if __C.RESUME:
print(' ========== Resume training')
if __C.CKPT_PATH is not None:
print('Warning: Now using CKPT_PATH args, '
'CKPT_VERSION and CKPT_EPOCH will not work')
path = __C.CKPT_PATH
else:
path = __C.CKPTS_PATH + \
'/ckpt_' + __C.CKPT_VERSION + \
'/epoch' + str(__C.CKPT_EPOCH) + '.pkl'
# Load the network parameters
print('Loading ckpt from {}'.format(path))
ckpt = torch.load(path)
print('Finish!')
if __C.N_GPU > 1:
net.load_state_dict(ckpt_proc(ckpt['state_dict']))
else:
net.load_state_dict(ckpt['state_dict'])
start_epoch = ckpt['epoch']
# Load the optimizer paramters
optim = get_optim(__C, net, data_size, ckpt['lr_base'])
optim._step = int(data_size / __C.BATCH_SIZE * start_epoch)
optim.optimizer.load_state_dict(ckpt['optimizer'])
if ('ckpt_' + __C.VERSION) not in os.listdir(__C.CKPTS_PATH):
os.mkdir(__C.CKPTS_PATH + '/ckpt_' + __C.VERSION)
else:
if ('ckpt_' + __C.VERSION) not in os.listdir(__C.CKPTS_PATH):
#shutil.rmtree(__C.CKPTS_PATH + '/ckpt_' + __C.VERSION)
os.mkdir(__C.CKPTS_PATH + '/ckpt_' + __C.VERSION)
optim = get_optim(__C, net, data_size)
start_epoch = 0
loss_sum = 0
named_params = list(net.named_parameters())
grad_norm = np.zeros(len(named_params))
# Define multi-thread dataloader
# if __C.SHUFFLE_MODE in ['external']:
# dataloader = Data.DataLoader(
# dataset,
# batch_size=__C.BATCH_SIZE,
# shuffle=False,
# num_workers=__C.NUM_WORKERS,
# pin_memory=__C.PIN_MEM,
# drop_last=True
# )
# else:
dataloader = Data.DataLoader(
dataset,
batch_size=__C.BATCH_SIZE,
shuffle=True,
num_workers=__C.NUM_WORKERS,
pin_memory=__C.PIN_MEM,
drop_last=True
)
logfile = open(
__C.LOG_PATH +
'/log_run_' + __C.VERSION + '.txt',
'a+'
)
logfile.write(str(__C))
logfile.close()
# Training script
for epoch in range(start_epoch, __C.MAX_EPOCH):
# Save log to file
logfile = open(
__C.LOG_PATH +
'/log_run_' + __C.VERSION + '.txt',
'a+'
)
logfile.write(
'=====================================\nnowTime: ' +
datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') +
'\n'
)
logfile.close()
# Learning Rate Decay
if epoch in __C.LR_DECAY_LIST:
adjust_lr(optim, __C.LR_DECAY_R)
# Externally shuffle data list
# if __C.SHUFFLE_MODE == 'external':
# dataset.shuffle_list(dataset.ans_list)
time_start = time.time()
# Iteration
for step, (
frcn_feat_iter,
grid_feat_iter,
bbox_feat_iter,
ques_ix_iter,
ans_iter
) in enumerate(dataloader):
optim.zero_grad()
frcn_feat_iter = frcn_feat_iter.cuda()
grid_feat_iter = grid_feat_iter.cuda()
bbox_feat_iter = bbox_feat_iter.cuda()
ques_ix_iter = ques_ix_iter.cuda()
ans_iter = ans_iter.cuda()
loss_tmp = 0
for accu_step in range(__C.GRAD_ACCU_STEPS):
loss_tmp = 0
sub_frcn_feat_iter = \
frcn_feat_iter[accu_step * __C.SUB_BATCH_SIZE:
(accu_step + 1) * __C.SUB_BATCH_SIZE]
sub_grid_feat_iter = \
grid_feat_iter[accu_step * __C.SUB_BATCH_SIZE:
(accu_step + 1) * __C.SUB_BATCH_SIZE]
sub_bbox_feat_iter = \
bbox_feat_iter[accu_step * __C.SUB_BATCH_SIZE:
(accu_step + 1) * __C.SUB_BATCH_SIZE]
sub_ques_ix_iter = \
ques_ix_iter[accu_step * __C.SUB_BATCH_SIZE:
(accu_step + 1) * __C.SUB_BATCH_SIZE]
sub_ans_iter = \
ans_iter[accu_step * __C.SUB_BATCH_SIZE:
(accu_step + 1) * __C.SUB_BATCH_SIZE]
pred = net(
sub_frcn_feat_iter,
sub_grid_feat_iter,
sub_bbox_feat_iter,
sub_ques_ix_iter
)
loss_item = [pred, sub_ans_iter]
loss_nonlinear_list = __C.LOSS_FUNC_NONLINEAR[__C.LOSS_FUNC]
for item_ix, loss_nonlinear in enumerate(loss_nonlinear_list):
if loss_nonlinear in ['flat']:
loss_item[item_ix] = loss_item[item_ix].view(-1)
elif loss_nonlinear:
loss_item[item_ix] = eval('F.' + loss_nonlinear + '(loss_item[item_ix], dim=1)')
loss = loss_fn(loss_item[0], loss_item[1])
if __C.LOSS_REDUCTION == 'mean':
# only mean-reduction needs be divided by grad_accu_steps
loss /= __C.GRAD_ACCU_STEPS
loss.backward()
loss_tmp += loss.cpu().data.numpy() * __C.GRAD_ACCU_STEPS
loss_sum += loss.cpu().data.numpy() * __C.GRAD_ACCU_STEPS
if __C.VERBOSE:
if dataset_eval is not None:
mode_str = __C.SPLIT['train'] + '->' + __C.SPLIT['val']
else:
mode_str = __C.SPLIT['train'] + '->' + __C.SPLIT['test']
print("\r[Version %s][Model %s][Dataset %s][Epoch %2d][Step %4d/%4d][%s] Loss: %.4f, Lr: %.2e" % (
__C.VERSION,
__C.MODEL_USE,
__C.DATASET,
epoch + 1,
step,
int(data_size / __C.BATCH_SIZE),
mode_str,
loss_tmp / __C.SUB_BATCH_SIZE,
optim._rate
), end=' ')
# Gradient norm clipping
if __C.GRAD_NORM_CLIP > 0:
nn.utils.clip_grad_norm_(
net.parameters(),
__C.GRAD_NORM_CLIP
)
# Save the gradient information
for name in range(len(named_params)):
norm_v = torch.norm(named_params[name][1].grad).cpu().data.numpy() \
if named_params[name][1].grad is not None else 0
grad_norm[name] += norm_v * __C.GRAD_ACCU_STEPS
# print('Param %-3s Name %-80s Grad_Norm %-20s'%
# (str(grad_wt),
# params[grad_wt][0],
# str(norm_v)))
optim.step()
time_end = time.time()
elapse_time = time_end-time_start
print('Finished in {}s'.format(int(elapse_time)))
epoch_finish = epoch + 1
# Save checkpoint
if not __C.SAVE_LAST or epoch_finish == __C.MAX_EPOCH:
if __C.N_GPU > 1:
state = {
'state_dict': net.module.state_dict(),
'optimizer': optim.optimizer.state_dict(),
'lr_base': optim.lr_base,
'epoch': epoch_finish
}
else:
state = {
'state_dict': net.state_dict(),
'optimizer': optim.optimizer.state_dict(),
'lr_base': optim.lr_base,
'epoch': epoch_finish
}
torch.save(
state,
__C.CKPTS_PATH +
'/ckpt_' + __C.VERSION +
'/epoch' + str(epoch_finish) +
'.pkl'
)
# Logging
logfile = open(
__C.LOG_PATH +
'/log_run_' + __C.VERSION + '.txt',
'a+'
)
logfile.write(
'Epoch: ' + str(epoch_finish) +
', Loss: ' + str(loss_sum / data_size) +
', Lr: ' + str(optim._rate) + '\n' +
'Elapsed time: ' + str(int(elapse_time)) +
', Speed(s/batch): ' + str(elapse_time / step) +
'\n\n'
)
logfile.close()
# Eval after every epoch
if dataset_eval is not None:
test_engine(
__C,
dataset_eval,
state_dict=net.state_dict(),
validation=True
)
# if self.__C.VERBOSE:
# logfile = open(
# self.__C.LOG_PATH +
# '/log_run_' + self.__C.VERSION + '.txt',
# 'a+'
# )
# for name in range(len(named_params)):
# logfile.write(
# 'Param %-3s Name %-80s Grad_Norm %-25s\n' % (
# str(name),
# named_params[name][0],
# str(grad_norm[name] / data_size * self.__C.BATCH_SIZE)
# )
# )
# logfile.write('\n')
# logfile.close()
loss_sum = 0
grad_norm = np.zeros(len(named_params))
# Modification - optionally run full result extract after training ends
if __C.EXTRACT_AFTER:
extract_engine(__C, state_dict=net.state_dict()) |