Spaces:
Runtime error
Runtime error
File size: 4,670 Bytes
0392181 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# --------------------------------------------------------
# OpenVQA
# Written by Yuhao Cui https://github.com/cuiyuhao1996
# --------------------------------------------------------
import os, json, torch, pickle
import numpy as np
import torch.nn as nn
import torch.utils.data as Data
from openvqa.models.model_loader import ModelLoader
from openvqa.datasets.dataset_loader import EvalLoader
# Evaluation
@torch.no_grad()
def test_engine(__C, dataset, state_dict=None, validation=False):
# Load parameters
if __C.CKPT_PATH is not None:
print('Warning: you are now using CKPT_PATH args, '
'CKPT_VERSION and CKPT_EPOCH will not work')
path = __C.CKPT_PATH
else:
path = __C.CKPTS_PATH + \
'/ckpt_' + __C.CKPT_VERSION + \
'/epoch' + str(__C.CKPT_EPOCH) + '.pkl'
# val_ckpt_flag = False
if state_dict is None:
# val_ckpt_flag = True
print('Loading ckpt from: {}'.format(path))
state_dict = torch.load(path)['state_dict']
print('Finish!')
if __C.N_GPU > 1:
state_dict = ckpt_proc(state_dict)
# Store the prediction list
# qid_list = [ques['question_id'] for ques in dataset.ques_list]
ans_ix_list = []
pred_list = []
data_size = dataset.data_size
token_size = dataset.token_size
ans_size = dataset.ans_size
pretrained_emb = dataset.pretrained_emb
net = ModelLoader(__C).Net(
__C,
pretrained_emb,
token_size,
ans_size
)
net.cuda()
net.eval()
if __C.N_GPU > 1:
net = nn.DataParallel(net, device_ids=__C.DEVICES)
net.load_state_dict(state_dict)
dataloader = Data.DataLoader(
dataset,
batch_size=__C.EVAL_BATCH_SIZE,
shuffle=False,
num_workers=__C.NUM_WORKERS,
pin_memory=__C.PIN_MEM
)
for step, (
frcn_feat_iter,
grid_feat_iter,
bbox_feat_iter,
ques_ix_iter,
ans_iter
) in enumerate(dataloader):
print("\rEvaluation: [step %4d/%4d]" % (
step,
int(data_size / __C.EVAL_BATCH_SIZE),
), end=' ')
frcn_feat_iter = frcn_feat_iter.cuda()
grid_feat_iter = grid_feat_iter.cuda()
bbox_feat_iter = bbox_feat_iter.cuda()
ques_ix_iter = ques_ix_iter.cuda()
pred = net(
frcn_feat_iter,
grid_feat_iter,
bbox_feat_iter,
ques_ix_iter
)
pred_np = pred.cpu().data.numpy()
pred_argmax = np.argmax(pred_np, axis=1)
# Save the answer index
if pred_argmax.shape[0] != __C.EVAL_BATCH_SIZE:
pred_argmax = np.pad(
pred_argmax,
(0, __C.EVAL_BATCH_SIZE - pred_argmax.shape[0]),
mode='constant',
constant_values=-1
)
ans_ix_list.append(pred_argmax)
# Save the whole prediction vector
if __C.TEST_SAVE_PRED:
if pred_np.shape[0] != __C.EVAL_BATCH_SIZE:
pred_np = np.pad(
pred_np,
((0, __C.EVAL_BATCH_SIZE - pred_np.shape[0]), (0, 0)),
mode='constant',
constant_values=-1
)
pred_list.append(pred_np)
print('')
ans_ix_list = np.array(ans_ix_list).reshape(-1)
if validation:
if __C.RUN_MODE not in ['train']:
result_eval_file = __C.CACHE_PATH + '/result_run_' + __C.CKPT_VERSION
else:
result_eval_file = __C.CACHE_PATH + '/result_run_' + __C.VERSION
else:
if __C.CKPT_PATH is not None:
result_eval_file = __C.RESULT_PATH + '/result_run_' + __C.CKPT_VERSION
else:
result_eval_file = __C.RESULT_PATH + '/result_run_' + __C.CKPT_VERSION + '_epoch' + str(__C.CKPT_EPOCH)
if __C.CKPT_PATH is not None:
ensemble_file = __C.PRED_PATH + '/result_run_' + __C.CKPT_VERSION + '.pkl'
else:
ensemble_file = __C.PRED_PATH + '/result_run_' + __C.CKPT_VERSION + '_epoch' + str(__C.CKPT_EPOCH) + '.pkl'
if __C.RUN_MODE not in ['train']:
log_file = __C.LOG_PATH + '/log_run_' + __C.CKPT_VERSION + '.txt'
else:
log_file = __C.LOG_PATH + '/log_run_' + __C.VERSION + '.txt'
EvalLoader(__C).eval(dataset, ans_ix_list, pred_list, result_eval_file, ensemble_file, log_file, validation)
def ckpt_proc(state_dict):
state_dict_new = {}
for key in state_dict:
state_dict_new['module.' + key] = state_dict[key]
# state_dict.pop(key)
return state_dict_new |