File size: 6,087 Bytes
0392181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""
=========================================================================================
Trojan VQA
Written by

Modified extraction engine to help with trojan result processing, based on test_engine.py
=========================================================================================
"""
# --------------------------------------------------------
# OpenVQA
# Written by Yuhao Cui https://github.com/cuiyuhao1996
# --------------------------------------------------------
import os, json, torch, pickle, copy
import numpy as np
import torch.nn as nn
import torch.utils.data as Data
from openvqa.models.model_loader import ModelLoader
from openvqa.datasets.dataset_loader import EvalLoader
from openvqa.datasets.dataset_loader import DatasetLoader


# Evaluation
@torch.no_grad()
def extract_engine(__C, state_dict=None):

    # Load parameters
    if __C.CKPT_PATH is not None:
        print('Warning: you are now using CKPT_PATH args, '
              'CKPT_VERSION and CKPT_EPOCH will not work')

        path = __C.CKPT_PATH
    else:
        path = __C.CKPTS_PATH + \
               '/ckpt_' + __C.CKPT_VERSION + \
               '/epoch' + str(__C.CKPT_EPOCH) + '.pkl'

    # val_ckpt_flag = False
    solo_run = False
    if state_dict is None:
        solo_run = True
        # val_ckpt_flag = True
        print('Loading ckpt from: {}'.format(path))
        state_dict = torch.load(path)['state_dict']
        print('Finish!')

        if __C.N_GPU > 1:
            state_dict = ckpt_proc(state_dict)

    # Configure base dataset
    __C_eval = copy.deepcopy(__C)
    setattr(__C_eval, 'RUN_MODE', 'val')
    setattr(__C_eval, 'VER', 'clean')
    dataset = DatasetLoader(__C_eval).DataSet()

    data_size = dataset.data_size
    token_size = dataset.token_size
    ans_size = dataset.ans_size
    pretrained_emb = dataset.pretrained_emb

    net = ModelLoader(__C).Net(
        __C,
        pretrained_emb,
        token_size,
        ans_size
    )
    net.cuda()
    net.eval()

    if __C.N_GPU > 1:
        net = nn.DataParallel(net, device_ids=__C.DEVICES)

    net.load_state_dict(state_dict)

    if __C.VER == 'clean':
        print('No trojan data provided. Will only extract clean results')
        troj_configs = ['clean']
    else:
        troj_configs = ['clean', 'troj', 'troji', 'trojq']

    for tc in troj_configs:
        # Store the prediction list
        # qid_list = [ques['question_id'] for ques in dataset.ques_list]
        ans_ix_list = []
        pred_list = []

        __C_eval = copy.deepcopy(__C)
        setattr(__C_eval, 'RUN_MODE', 'val')
        if tc == 'troj':
            setattr(__C_eval, 'TROJ_DIS_I', False)
            setattr(__C_eval, 'TROJ_DIS_Q', False)
            dataset = DatasetLoader(__C_eval).DataSet()
        elif tc == 'troji':
            setattr(__C_eval, 'TROJ_DIS_I', False)
            setattr(__C_eval, 'TROJ_DIS_Q', True)
            dataset = DatasetLoader(__C_eval).DataSet()
        elif tc == 'trojq':
            setattr(__C_eval, 'TROJ_DIS_I', True)
            setattr(__C_eval, 'TROJ_DIS_Q', False)
            dataset = DatasetLoader(__C_eval).DataSet()

        dataloader = Data.DataLoader(
            dataset,
            batch_size=__C.EVAL_BATCH_SIZE,
            shuffle=False,
            num_workers=__C.NUM_WORKERS,
            pin_memory=__C.PIN_MEM
        )

        for step, (
                frcn_feat_iter,
                grid_feat_iter,
                bbox_feat_iter,
                ques_ix_iter,
                ans_iter
        ) in enumerate(dataloader):

            print("\rEvaluation: [step %4d/%4d]" % (
                step,
                int(data_size / __C.EVAL_BATCH_SIZE),
            ), end='          ')

            frcn_feat_iter = frcn_feat_iter.cuda()
            grid_feat_iter = grid_feat_iter.cuda()
            bbox_feat_iter = bbox_feat_iter.cuda()
            ques_ix_iter = ques_ix_iter.cuda()

            pred = net(
                frcn_feat_iter,
                grid_feat_iter,
                bbox_feat_iter,
                ques_ix_iter
            )
            pred_np = pred.cpu().data.numpy()
            pred_argmax = np.argmax(pred_np, axis=1)

            # Save the answer index
            if pred_argmax.shape[0] != __C.EVAL_BATCH_SIZE:
                pred_argmax = np.pad(
                    pred_argmax,
                    (0, __C.EVAL_BATCH_SIZE - pred_argmax.shape[0]),
                    mode='constant',
                    constant_values=-1
                )

            ans_ix_list.append(pred_argmax)

            # Save the whole prediction vector
            if __C.TEST_SAVE_PRED:
                if pred_np.shape[0] != __C.EVAL_BATCH_SIZE:
                    pred_np = np.pad(
                        pred_np,
                        ((0, __C.EVAL_BATCH_SIZE - pred_np.shape[0]), (0, 0)),
                        mode='constant',
                        constant_values=-1
                    )

                pred_list.append(pred_np)

        print('')
        ans_ix_list = np.array(ans_ix_list).reshape(-1)

        if solo_run:
            result_eval_file = __C.RESULT_PATH + '/result_run_' + __C.CKPT_VERSION + '_' + tc
        else:
            result_eval_file = __C.RESULT_PATH + '/result_run_' + __C.VERSION + '_' + tc

        if __C.CKPT_PATH is not None:
            ensemble_file = __C.PRED_PATH + '/result_run_' + __C.CKPT_VERSION + '.pkl'
        else:
            ensemble_file = __C.PRED_PATH + '/result_run_' + __C.CKPT_VERSION + '_epoch' + str(__C.CKPT_EPOCH) + '.pkl'


        if __C.RUN_MODE not in ['train']:
            log_file = __C.LOG_PATH + '/log_run_' + __C.CKPT_VERSION + '.txt'
        else:
            log_file = __C.LOG_PATH + '/log_run_' + __C.VERSION + '.txt'

        EvalLoader(__C).eval(dataset, ans_ix_list, pred_list, result_eval_file, ensemble_file, log_file, False)


def ckpt_proc(state_dict):
    state_dict_new = {}
    for key in state_dict:
        state_dict_new['module.' + key] = state_dict[key]
        # state_dict.pop(key)

    return state_dict_new